Optical Tweezers

Methods and Protocols

Edited by

Arne Gennerich

Department of Anatomy and Structural Biology & Gruss-Lipper Biophotonics Center
Albert Einstein College of Medicine
Bronx, NY, USA
Preface

Numerous biological processes are dependent on the minute forces and displacements generated by enzymes capable of converting chemical energy into mechanical motion. For example, DNA and RNA polymerases generate forces during DNA synthesis and transcription, while the microtubule motors kinesin and cytoplasmic dynein generate forces that regulate spindle and chromosome positioning during mitosis. Deciphering the molecular mechanisms of these mechanoenzymes has fascinated scientists for more than 150 years since the discovery of muscle myosin. However, it was the invention of optical tweezers in 1986 by Arthur Ashkin that gave researchers the ability to investigate the force-generating molecular mechanisms of single mechanoenzymes. Optical tweezers, which can measure forces of 0.01 to ~1000 pN, have been invaluable in defining the forces and displacements that these biological nanomachines generate. While the optical tweezers of the past have been largely custom-built and used by biophysicists, they are now being more widely employed by nonexperts, owing to a more detailed description of optical tweezers systems and the availability of commercial solutions. However, a thorough description of the theory and design, together with protocols for the calibration and application of optical tweezers to biological systems both in vitro and in vivo, had not until now been compiled into a single resource.

The aim of this volume is to provide a comprehensive overview of optical tweezers setups, both in practical and theoretical terms, to help biophysicists, biochemists, and cell biologists alike to build and calibrate their own instruments and to perform force measurements on mechanoenzymes both in isolation in vitro and in living cells. To aid the reader, this volume has been divided in three parts. The chapters in Part I present the theory and practical design of optical tweezers both without and in combination with single-molecule fluorescence imaging as well as instructions for calibrating and stabilizing optical tweezers. Part II provides detailed protocols for performing force measurements on single DNA- and microtubule/actin-associated mechanoenzymes in isolation as well as protocols for protein unfolding/refolding experiments and the study of protein degradation. Part III describes the recent advances that have opened up quantitative force measurements on actin and microtubule motors in living cells.

It is my hope that, in addition to aiding seasoned users of optical tweezers, this volume will help to further expand the accessibility and use of optical traps by scientists of diverse disciplines. In doing so, may it foster new creative and collaborative approaches for using these exquisitely sensitive instruments to understand how molecular machines in the cell generate force and motion.

Bronx, NY
Arne Gennerich
Contents

Preface ... v
Contributors .. ix

Part I Theory and Design of Optical Tweezers

1 Introduction to Optical Tweezers ... 3
 Matthias D. Koch and Joshua W. Shaevitz

2 Exact Theory of Optical Tweezers and Its Application
 to Absolute Calibration .. 25
 Rafael S. Dutra, Nathan B. Viana, Paulo A. Maia Neto,
 and H. Moysés Nussenzveig

3 Beyond the Hookean Spring Model: Direct Measurement
 of Optical Forces Through Light Momentum Changes 41
 Arnau Farré, Ferran Marsà, and Mario Montes-Usategui

4 A Surface-Coupled Optical Trap with 1-bp Precision
 via Active Stabilization ... 77
 Stephen R. Okoniewski, Ashley R. Carter, and Thomas T. Perkins

5 Implementation and Tuning of an Optical Tweezers Force-Clamp
 Feedback System .. 109
 Michael Bugiel, Anita Jannasch, and Erik Schäffer

6 Custom-Made Microspheres for Optical Tweezers 137
 Anita Jannasch, Mohammad K. Abdosamadi, Avin Ramaiya,
 Suman De, Valentina Ferro, Aaron Sonnberger, and Erik Schäffer

7 Optical Torque Wrench Design and Calibration 157
 Zhanna Santybajeva and Francesco Pedaci

8 High-Resolution “Fleezers”: Dual-Trap Optical Tweezers Combined
 with Single-Molecule Fluorescence Detection ... 183
 Kevin D. Whitley, Matthew J. Comstock, and Yann R. Chemla

9 Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments 257
 Iddo Heller, Niels Laurens, Daan Vorselen, Onno D. Broekmans,
 Andreas S. Biebricher, Graeme A. King, Ineke Brouwer,
 Gijs J.L. Wuite, and Erwin J.G. Peterman

Part II Optical Tweezers-Based Manipulation and Analysis
 of DNA-DNA Interactions, Protein Unfolding/Refolding,
 and Motion/Force-Generation by Mechanoenzymes In Vitro

10 Probing DNA–DNA Interactions with a Combination of Quadruple-Trap
 Optical Tweezers and Microfluidics ... 275
 Ineke Brouwer, Graeme A. King, Iddo Heller, Andreas S. Biebricher,
 Erwin J.G. Peterman, and Gijs J.L. Wuite
 Chang-Ting Lin and Taekjip Ha
12 Mechanically Watching the ClpXP Proteolytic Machinery 317
 Juan Carlos Cordova, Adrian O. Olivares, and Matthew J. Lang
13 Deciphering the Molecular Mechanism of the Bacteriophage φ29 DNA Packaging Motor ... 343
 Shixin Liu, Sara Tafoya, and Carlos Bustamante
14 Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers ... 357
 Junyi Jiao, Aleksander A. Rebane, Lu Ma, and Yongli Zhang
15 Observing Single RNA Polymerase Molecules Down to Base-Pair Resolution ... 391
 Anirban Chakraborty, Cong A. Meng, and Steven M. Block
16 Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends ... 411
 Marian Baclayon, Svenja-Marei Kalisch, Ed Hendel, Liedewij Laan, Julien Husson, E. Laura Munteanu, and Marileen Dogterom
17 Simultaneous Manipulation and Super-Resolution Fluorescence Imaging of Individual Kinetochores Coupled to Microtubule Tips 437
 Yi Deng and Charles L. Asbury
18 Measurement of Force-Dependent Release Rates of Cytoskeletal Motors 469
 Sinan Can and Ahmet Yildiz
19 Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers ... 483
 Michael J. Greenberg, Henry Shuman, and E. Michael Ostap

PART III QUANTITATIVE OPTICAL TWEEZERS STUDIES IN VIVO

20 Quantifying Force and Viscoelasticity Inside Living Cells Using an Active–Passive Calibrated Optical Trap ... 513
 Christine M. Ritter, Josep Mas, Lene Oddershede, and Kirstine Berg-Sørensen
21 Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells ... 537
 Adam G. Hendricks and Yale E. Goldman

Index ... 553
Contributors

MOHAMMAD K. ABDOSAMADI • Center for Plant Molecular Biology, Universität Tübingen, Tübingen, Germany
CHARLES L. ASBURY • Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
MARIAN BACLAYON • Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; FOM Institute AMOLF, Amsterdam, Delft, The Netherlands
KIRSTINE BERG-SØRENSEN • Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
ANDREAS S. BIEBRICHER • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
STEVEN M. BLOCK • Department of Biology and Department of Applied Physics, Stanford University, Stanford, CA, USA
ONNO D. BROEKMAN • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
INEKE BROUWER • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
MICHAEL BUGIEL • Center for Plant Molecular Biology, Universität Tübingen, Tübingen, Germany
CARLOS BUSTAMANTE • University of California and Howard Hughes Medical Institute, Berkeley, CA, USA
SINAN CAN • Department of Physics, University of California, Berkeley, CA, USA
ASHLEY R. CARTER • Department of Physics and Astronomy, Amherst College, Amherst, MA, USA
ANIRBAN CHAKRABORTY • Department of Biology, Stanford University, Stanford, CA, USA
YANN R. CHEMLA • Center for Biophysics and Computational Biology and Center for the Physics of Living Cells, University of Illinois, Urbana, IL, USA
MATTHEW J. COMSTOCK • Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
JUAN CARLOS CORDOVA • Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
SUMAN DE • Center for Plant Molecular Biology, Universität Tübingen, Tübingen, Germany
YI DENG • Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
MARILEEN DOGTEROM • Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; FOM Institute AMOLF, Amsterdam, Delft, The Netherlands
RAFAEL S. DUTRA • Instituto Federal de Educação, Ciência e Tecnologia, Paracambi, Brazil; Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
ARNAU FARRÉ • Impetux Optics S.L., Barcelona, Spain; Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain
VALENTINA FERRO • Center for Plant Molecular Biology, Universitat Tubingen, Tubingen, Germany

YALE E. GOLDMAN • Pennsylvania Muscle Institute, Perelman School of Medicine, Pennsylvania Muscle Institute, Perelman School of Medicine, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

MICHAEL J. GREENBERG • Department of Physiology, The Pennsylvania Muscle Institute, Philadelphia, PA, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA

TAEKJIP HA • Department of Biophysics and Biophysical Chemistry, Thomas C. Jenkins Department of Biophysics and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Baltimore, MD, USA

IDDO HELLER • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

ED HENDEL • FOM Institute AMOLF, Amsterdam, Delft, The Netherlands

ADAM G. HENDRICKS • Department of Bioengineering, McGill University, Montreal, QC, Canada

JULIEN HUSSON • FOM Institute AMOLF, Amsterdam, Delft, The Netherlands

ANITA JANNASCH • Center for Plant Molecular Biology, Universitat Tubingen, Tubingen, Germany

JUNYI JIAO • Department of Cell Biology and Integrated Graduate Program in Physical and Engineering Biology, Yale School of Medicine, New Haven, CT, USA

SVENJA-MAREI KALISCH • Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands

GRAEME A. KING • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

MATTHIAS D. KOCH • Joseph Henry Laboratory of Physics and Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA

LIEDEWIJ LAAN • Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; FOM Institute AMOLF, Amsterdam, Delft, The Netherlands

MATTHEW J. LANG • Department of Chemical and Biomolecular Engineering and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA

NIELS LAURENS • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

CHANG-TING LIN • Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA

SHIXIN LIU • Rockefeller University, New York, NY, USA

LU MA • Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA

FERRAN MARSA • Impetux Optics S.L., Barcelona, Spain; Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain

JOSEP MAS • School of Physics & Astronomy, University of St Andrews, Scotland, UK

CONG A. MENG • Department of Chemistry, Stanford University, Stanford, CA, USA

MARIO MONTES-USATEGUI • Departamento de Fisica Aplicada i Optica, Facultat de Fisica and Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain
GIJS J. L. WUTTE • Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

AHMET YILDIZ • Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA

YONGLI ZHANG • Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA