Preface

The development of biopesticides based on microbes is an area of growing interest world- wide. Harnessing the power of naturally occurring antagonists of pests and diseases has always been an attractive proposal. We are surrounded by many instances of natural enemies keeping potential pests in check, so the idea of using natural enemies to reduce the pest issues, due in part to monoculture and intensive farming, has appeal. However, as has been repeatedly realised, a lot of research is needed to make this a reality for any specific pest.

The Methods in Molecular Biology (MiMB) series has been useful to many researchers, as few articles describe methods in sufficient detail to be able to reproduce without many learning errors. This can make learning a new techniques a frustrating and even costly business. Books which focus on the details of specific methods are much sought-after by researchers. This volume in the MiMB series is possibly pushing the envelope of what constituents molecular methods as many of the techniques are not all molecular based, but our aim is to provide methods of particular interest to those developing biopesticides based on live organisms. The area of biopesticide research and development is complex, ranging from selecting the right microbe to applying to the pest population; it requires cross-discipline science and industry cooperation.

A positive for biopesticide researchers is that there is a push to develop more sustainable pest control in most countries, with microbial-based pesticides an obvious choice. One aim of this book is to assist, in a small way, the wave of new developments of biopesticides, in the hope we can make the world a safer and healthier place.

We would like to thank all the contributors, for putting together their high quality and easy-to-follow protocols and share their knowledge with the scientific community. We also want to acknowledge John M. Walker and co-workers at Springer for the opportunity to broaden and gain substantial experience by assembling this collection of articles.

Lincoln, New Zealand Travis R. Glare
Lincoln, New Zealand Maria E. Moran-Diez
Contents

Preface

Contributors

1 What are Microbial-based Biopesticides?
 María E. Morán-Diez and Travis R. Glare

PART I SCREENING, ISOLATION AND IDENTIFICATION OF POTENTIAL BIOLOGICAL CONTROL AGENTS

2 Isolation and Mass Production of Trichoderma
 Artemio Mendoza-Mendoza, Annabel Clouston, Jin-Hua Li,
 Maria Fernanda Nieto-Jacobo, Nicholas Cummings, Johanna Steyaert,
 and Robert Hill

PART II EVALUATING MODE OF ACTION OF MICROORGANISMS

3 Methods for the Evaluation of the Bioactivity and Biocontrol Potential of Species of Trichoderma
 Johanna Steyaert, Emily Hicks, Janaki Kandula, Diwakar Kandula,
 Hossein Alizadeh, Mark Braithwaite, Jessica Yardley,
 Artemio Mendoza-Mendoza, and Alison Stewart

PART III MASS PRODUCTION AND FORMULATIONS: BACTERIA

4 Purification of the Yersinia entomophaga Yen-TC Toxin Complex Using Size Exclusion Chromatography
 Sandra A. Jones and Mark R.H. Hurst

5 Coated Solid Substrate Microbe Formulations: Pseudomonas spp. and Zeolite
 Craig R. Bunt, Sally Price, John Hampton, and Scott Stelting

PART IV MASS PRODUCTION AND FORMULATIONS: FUNGI

6 Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation
 Octavio Loera-Corral, Javier Porcayo-Loza, Roberto Montesinos-Matias,
 and Ernesto Favela-Torres

7 Liquid Culture Production of Fungal Microsclerotia
 Mark A. Jackson and Angela R. Payne

8 Isolation and Assessment of Stability of Six Formulations of Entomopathogenic Beauveria Bassiana
 Lizzy A. Mwamburi
PART V MASS PRODUCTION AND FORMULATIONS: VIRUSES

9 Cell Culture for Production of Insecticidal Viruses 95
 Steven Reid, Leslie C.L. Chan, Leila Matindoost, Charlotte Pushparajan, and Gabriel Visnovsky

PART VI MASS PRODUCTION AND FORMULATIONS: NEMATODES

10 Formulation of Nematodes .. 121
 Arne Peters

11 In Vivo Production of Entomopathogenic Nematodes 137
 David I. Shapiro-Ilan, Juan A. Morales-Ramos, and M. Guadalupe Rojas

PART VII MONITORING OF APPLIED MICROBES

12 Detection and Quantification of the Entomopathogenic Fungal
 Endophyte Beauveria bassiana in Plants by Nested and Quantitative PCR. . 161
 Inmaculada Garrido-Jurado, Blanca B. Landa, and Enrique Quesada-Moraga

13 Plant Tissue Preparation for the Detection of an Endophytic
 Fungus In Planta .. 167
 Aimee C. McKinnon

PART VIII QUALITY CONTROL, SAFETY, AND REGISTRATION

14 Measuring Chitinase and Protease Activity in Cultures
 of Fungal Entomopathogens ... 177
 Peter Cheong, Travis R. Glare, Michael Rostás, and Stephen R. Haines

15 Analytical Methods for Secondary Metabolite Detection 191
 Judith Taibon and Hermann Strasser

16 Development of Biopesticides and Future Opportunities 211
 Travis R. Glare, Roma L. Gwynn, and Maria E. Moran-Diez

Erratum to ... E1

Index ... 223
Contributors

Hossein Alizadeh • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Mark Braithwaite • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Craig R. Bunt • Department of Agriculture Sciences, Lincoln University, Lincoln, New Zealand
Leslie C.L. Chan • Patheon Biologics Australia Pty Ltd, Woolloongabba, QLD, Australia
Peter Cheong • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand; Biotelliga Limited, Pukekohe, New Zealand
Annabel Clouston • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Nicholas Cummings • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Ernesto Favela-Torres • Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Inmaculada Garrido-Jurado • Department of Agricultural and Forest Science and Resources, University of Córdoba (UCO), Campus de Rabanales, CeiA3, Córdoba, Spain
Travis R. Glare • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Roma L. Gwynn • Rationale, Duns, Scotland
Stephen R. Haines • AgResearch, Lincoln Research Centre, Christchurch, New Zealand
John Hampton • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Emily Hicks • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Robert Hill • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Mark R.H. Hurst • Innovative Farm Systems, AgResearch, Lincoln Research Centre, Lincoln, New Zealand
Mark A. Jackson • United States Department of Agriculture, Agriculture Research Service, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, USA
Sandra A. Jones • Innovative Farm Systems, AgResearch, Lincoln Research Centre, Lincoln, New Zealand
Diwakar Kandula • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Janaki Kandula • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Blanca B. Landa • Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Campus de Excelencia en Agroalimentación, CeiA3, Córdoba, Spain
Jin-Hua Li • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
Octavio Loera-Corral • Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
Contributors

LEILA MATINDOOST • Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
AIMEE C. MCKINNON • Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand
ARTEMIO MENDOZA-MENDOZA • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
ROBERTO MONTESINOS-MATIAS • Centro Nacional de Referencia de Control Biológico, Tecomán, Colima, Mexico
JUAN A. MORALES-RAMOS • Biological Control of Pests Research Unit, USDA-ARS NBCL, Stoneville, MS, USA
MARÍA E. MORÁN-DIEZ • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
LIZZY A. MWAMBURI • Department of Biological Sciences, University of Eldoret, El Doret, Kenya
MARIA FERNANDA NIETO-JACOBO • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
ANGELA R. PAYNE • United States Department of Agriculture, Agriculture Research Service, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, USA
ARNE PETERS • e-nema GmbH, Schwentiental, Germany
JAVIER PORCAYO-LOZA • Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
SALLY PRICE • Department of Agriculture Sciences, Lincoln University, Lincoln, New Zealand
CHARLOTTE PUSHPARAJAN • Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, New Zealand
ENRIQUE QUESADA-MORAGA • Department of Agricultural and Forest Science and Resources, University of Córdoba (UCO), Campus de Rabanales, CeiA3, Córdoba, Spain
STEVEN REID • School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Qld., Australia
M. GUADALUPE ROJAS • Biological Control of Pests Research Unit, USDA-ARS NBCL, Stoneville, MS, USA
MICHAEL ROSTAS • Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand
DAVID I. SHAPIRO-ILAN • United States Department of Agriculture, Agriculture Research Service, Southeastern Fruit and Tree Nut Laboratory, United States Department of Agriculture, Byron, GA, USA
SCOTT STELTING • USDA, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
ALISON STEWART • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand; Marrone Bio Innovations, Davis, CA, USA
JOHANNA STEYAERT • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
HERMANN STRASSER • Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
JUDITH TAIBON • Institute of Pharmacy, Department of Pharmacognosy, CCB – Centrum of Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria; Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
GABRIEL VISNOVSKY • Chemical and Process Engineering Department, University of Canterbury, Canterbury, New Zealand
JESSICA YARDLEY • Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand