Methods in Molecular Biology

Series Editor
John M. Walker
School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
Capillary Electrophoresis of Proteins and Peptides

Methods and Protocols

Edited by

Nguyet Thuy Tran and Myriam Taverna

Institut Galien Paris-Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
Preface

Peptides and proteins represent an important class of biomolecules which play essential roles in living organisms by regulating or controlling many biological processes. At the same time, they display very diverse functions, acting as hormones, substrates, neurotransmitters, immunomodulators, enzymes, coenzymes, receptor ligands, transporters, and toxins. Proteins and peptides are also very important biopharmaceuticals, and their therapeutic use requires an extensive structural characterization as well as multiple quality controls of these complex drugs.

This book provides a comprehensive survey of recent developments and applications of high performance capillary electrophoresis in the field of protein and peptide analysis. The focus is given to the analysis of intact proteins. (Glyco)proteins can also be analyzed as fragments (peptides, glycopeptides, oligosaccharides, monosaccharides) after their enzymatic or chemical cleavage, and this would represent another set of analytical strategies and topics that have not been considered in this book. This book covers different modes of capillary electrophoresis (CE) useful for protein and peptide analysis, CZE, CIEF, ACE, CGE, and different types of application such as the quality control of therapeutic proteins and monoclonal antibodies, clinical analyses of chemokines in tissues, qualitative and quantitative analysis of vaccine proteins, and determination of binding constants in complexes involving peptides or proteins.

CE is a powerful separation technique; it brings speed, high resolution, automation, and low consumption of samples and buffers. However, the separation of proteins by CE is often complicated by their tendency to adsorb onto the negatively charged surface of fused silica capillaries. This occurs primarily via coulombic interaction but can rapidly get amplified by the unfolding of the adsorbed proteins which can in turn participate, through a cooperative effect, to adsorb other proteins involving at this stage all kind of molecular interactions (hydrophobic, dipolar, hydrogen bounding, etc.). Different strategies, with different levels of success, can be employed to circumvent these issues. They may rely on simply working at extreme pHs (acidic or alkaline) or increasing ionic strengths of the buffers to more drastic solutions that entail dynamic or permanent capillary coatings.

The first part is devoted to detection methods employed in CE for proteins and peptides, a topic as important as the separation itself. Proteins can be easily detected with UV detection in CE; however, to achieve more sensitive detection, laser-induced fluorescence detection may be preferable. Even if proteins have tryptophan residues that possess intrinsic fluorescence properties, most of the sensitive applications require the derivatization of peptides or proteins with fluorophore dyes. Another way to achieve high sensitivity is to use mass spectrometry (MS) as a detector. The number of applications using the coupling of CE to MS has significantly increased these last 10 years. CE-MS indeed combines the high separation efficiency of CE with the possibility of mass detection and analyte characterization through MS-MS. Besides, the interfacing technology has considerably evolved proposing, at present configurations with or without addition of sheath liquid, to maintain the electrical continuity required for the electrophoretic separation. It remains that not all CE separation conditions are compatible with MS, but researchers are progressing, trying to
push the current limits of CE-MS. CIEF combined with MS is possible, while this coupling presents major challenges as the compatibility between the separation medium, which contains anticonvective gel and ampholytes, and MS detector.

The second part provides the readers with the latest breakthroughs and improvements in CE. This part encompasses many contributions showing that CE is an evolving technique which is still very active in providing innovations and new solutions to circumvent protein adsorption, to increase detection sensitivities or specificities. The recent advances have mainly been focused into two directions: the sample pretreatments online to the separation and the integration of electrophoretic processes into microchips. Sample treatment is often required for real biological samples either to eliminate interfering compounds, matrices, or to enrich the sample with the protein present at a too low concentration if body fluid or tissues are studied. Monoliths which can be easily synthetized into capillaries are among the solid supports that rank amongst the most adapted for online sample pretreatments.

Part 3 highlights different recent applications in the field of quality control of therapeutic proteins. This part is fully illustrated by protocols dealing with recombinant proteins such as growth hormone, insulin, plasma-derived proteins such as human serum albumin as well as monoclonal antibodies. Those applications are proposed for formulated pharmaceutical preparations, and this can complicate the analytical development of the CE method due to the presence of specific excipients in those formulations aimed at protecting the active proteins from degradation or ensuring a longer or controlled release of the drug.

Finally, Part 4 illustrates quite specific applications of CE analysis in the field of vaccine proteins, or peptide/alkali metal ion complexes, showing that CE can be applied to very different areas in health and therapeutics and even to give more insight on the way proteins are acting or interacting.

This book is useful for a wide audience, including researchers, technicians, and students; it can also be a reference for experienced researchers as well as for beginners and newcomers in this field. Indeed, besides specific methods fully detailed, several important principles related to protein analyses by CE are briefly noted in several chapters (separation modes, capillary coatings, chemical and physical protein degradation ways, CE modes for intact glycoprotein analysis, methods for coupling solid phase extraction to CE, methods for pre-capillary, in-capillary, or post-capillary derivatizing proteins, CE-MS coupling).

As editor and co-editors of this book, we would like to thank all the chapter contributors who made the editing of this book possible by their excellent work covering quite exhaustively the current and most active topics of CE for peptides and proteins.

Châtenay-Malabry, France
Nguyet Thuy Tran
Myriam Taverna
Contents

Preface .. v
Contributors .. ix

1 Chemical and Instrumental Approaches for Capillary Electrophoresis (CE)–Fluorescence Analysis of Proteins .. 1
 Isabelle Le Potier, Audrey Boutonnet, Vincent Ecochard, and François Couderc

2 Discrimination of Glycoproteins from Unglycosylated Proteins in Capillary Electrophoresis: Two-Color LIF Detection Coupled with Post-column Derivatization .. 11
 Takashi Kaneta

3 Capillary Zone Electrophoresis-Mass Spectrometry of Intact Proteins 25
 Elena Domínguez-Vega, Rob Haselberg, and Govert W. Somsen

4 Screening of Small Intact Proteins by Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CE-ESI-MS) .. 43
 Sabine Neuberger, Angelina Rafai, and Christian Neusüß

5 Online Capillary IsoElectric Focusing-ElectroSpray Ionization Mass Spectrometry (CIEF-ESI MS) in Glycerol–Water Media for the Separation and Characterization of Hydrophilic and Hydrophobic Proteins .. 57
 Meriem Mokaddem, Fanny d’Orlyé, and Anne Varenne

6 On-Line Solid-Phase Extraction Capillary Electrophoresis Mass Spectrometry for Preconcentration and Clean-Up of Peptides and Proteins .. 67
 Fernando Benavente, Silvia Medina-Casanellas, Estela Giménez, and Victoria Sanz-Nebot

7 Affinity Monolith-Integrated Microchips for Protein Purification and Concentration .. 85
 Changlu Gao, Xiuhua Sun, Huaixin Wang, Wei Qiao, and Bo Hu

8 Analysis of Somatropin by Double-Injection Capillary-Zone Electrophoresis in Polybrene/Chondroitin Sulfate A Double-Coated Capillaries 93
 Ahmad Amini

9 Poly(N,N-Dimethylacrylamide)-Based Coatings to Modulate Electroosmotic Flow and Capillary Surface Properties for Protein Analysis 107
 Laura Sola, Marina Cretich, and Marcella Chiari

10 Measurement of Inflammatory Chemokines in Micro-dissected Tissue Biopsy Samples by Chip-Based Immunoaffinity Capillary Electrophoresis 121
 Terry M. Phillips, Edward Wellner, Shane McMohan, and Heather Kalish
11 Separation of Recombinant Therapeutic Proteins Using Capillary Gel Electrophoresis and Capillary Isoelectric Focusing 137
 Caitlyn A.G. De Jong, Jessica Risley, Alexis K. Lee, Shuai Sherry Zhao, and David D.Y. Chen

12 Characterization of Chemical and Physical Modifications of Human Serum Albumin by Capillary Zone Electrophoresis 151
 Anne-Lise Marie, Nguyet Thuy Tran, and Myriam Taverna

13 Capillary Electrophoresis Method for the Assessment of Erythropoiesis-Stimulating Agents in Final Formulations 165
 Michel Girard, Anita Kane, and Sylvie Boucher

14 Quality Control of Therapeutic Monoclonal Antibodies at the Hospital After Their Compounding and Before Their Administration to Patients 179
 Emmanuel Jaccoulet, Claire Smadja, and Myriam Taverna

15 Capillary Electrophoresis-Ultraviolet-Mass Spectrometry (CE-UV-MS) for the Simultaneous Determination and Quantification of Insulin Formulations 185
 Julie Schappler and Serge Rudaz

16 Applications of an Automated and Quantitative CE-Based Size and Charge Western Blot for Therapeutic Proteins and Vaccines 197
 Richard R. Rustandi, Melissa Hamm, Catherine Lancaster, and John W. Loughney

17 Affinity Capillary Electrophoresis Applied to Investigation of Valinomycin Complexes with Ammonium and Alkali Metal Ions 219
 Sille Štěpánová and Václav Kašička

Index ... 233
Contributors

Ahmad Amini • Medical Products Agency (MPA), Uppsala, Sweden; Division of Analytical Pharmaceutical Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
Fernando Benavente • Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
Sylvie Boucher • Centre for Biologies Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON, Canada
Audrey Boutonnet • Picometrix Technologies, Labège, France
David D.Y. Chen • Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
Marcella Chiari • Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
François Couderc • Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, Toulouse, France
Marina Cretich • Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
Fanny d’Orlé • Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France
Elena Domínguez-Vega • Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
Vincent Ecochard • IPBS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
Changlu Gao • School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong, China
Estela Giménez • Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
Michel Girard • Centre for Biologies Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON, Canada
Melissa Hamm • Merck Research Laboratories, Vaccine Analytical Development, West Point, PA, USA
Rob Haselberg • Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
Bo Hu • School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong, China
Emmanuel Jacoulet • Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
Caitlyn A.G. de Jong • Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
HEATHER KALISH • Microanalytical Immunochemistry Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA

ANITA KANE • Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, ON, Canada

TAKASHI KANETA • Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

VÁCLAV KAŠICKA • Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic

CATHERINE LANCASTER • Merck Research Laboratories, Vaccine Analytical Development, West Point, PA, USA

ALEXIS K. LEE • Department of Chemistry, University of British Columbia, Vancouver, BC, Canada

JOHN W. LOUGHNEY • Merck Research Laboratories, Vaccine Analytical Development, West Point, PA, USA

ANNE-LISE MARIE • Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France

SHANE MCMOHAN • Microanalytical Immunochemistry Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA

SILVIA MEDINA-CASANELLAS • Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain

MERIEM MOKADDEM • Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France

ELENA DOMÍNGUEZ-VEGA • Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands

SABINE NEUERGER • Department of Chemistry, Aalen University, Aalen, Germany

CHRISTIAN NEUSÜß • Department of Chemistry, Aalen University, Aalen, Germany

TERRY M. PHILLIPS • Microanalytical Immunochemistry Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA; National Institute of Biomedical Imaging and Bioengineering, Washington DC, USA

ISABELLE LE POTIER • Institut Galien Paris Sud, UMR8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France

WEI QIAO • School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong, China

ANGELINA RAFAI • Solvias AG, Kaiseraugst, Switzerland

JESSICA RISLEY • Department of Chemistry, University of British Columbia, Vancouver, BC, Canada

SERGE RUDAZ • School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
RICHARD R. RUSTANDI • Merck Research Laboratories, Vaccine Analytical Development, West Point, PA, USA
VICTORIA SANZ-NEBOT • Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
JULIE SCHAPPLER • School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
CLAIRE SMADJA • Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
LAURA SOLA • Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
GOVERT W. SOMSEN • Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
SILLE ŠTĚPÁNOVÁ • Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
XIUHUA SUN • School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong, China
MYRIAM TAVERNA • Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
NGUYET THUY TRAN • Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
ANNE VARENNE • Chimie ParisTech, PSL Research University Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022), Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France
ELENA DOMÍNGUEZ-VEGA • Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
HUAIXIN WANG • School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong, China
EDWARD WELLNER • Retired from National Institutes of Health, Bethesda, MD, USA
SHUAI SHERRY ZHAO • Department of Chemistry, University of British Columbia, Vancouver, BC, Canada