Methods in Molecular Biology

Series Editor
John M. Walker
School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
The Nuclear Envelope

Methods and Protocols

Edited by

Sue Shackleton

Department of Biochemistry, University of Leicester, Leicester, UK

Philippe Collas

Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway

Eric C. Schirmer

Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
The nuclear envelope (NE) is a double membrane system enclosing the nucleus and is the central distinguishing feature of all eukaryotes. In addition to protecting the genetic material, the NE regulates the trafficking of proteins, RNAs, and ribosomes between the nucleus and cytoplasm. More recently, the identification of hundreds of NE transmembrane proteins (NETs) has revealed that the NE is also involved in diverse structural and signaling networks, both within the nucleus and through connections between the nucleus and the cytoskeleton. The importance of these networks is highlighted by the involvement of NETs and NE intermediate filaments, the nuclear lamins, in a wide range of inherited diseases. Indications that NE composition is highly tissue-specific further implicate the NE in enabling the level of complexity in gene regulation required to support tissue evolution in higher organisms.

Despite its considerable importance, the NE is among the least understood cellular organelles. This largely reflects the inherent difficulties in studying the NE and its component proteins. For example, lamins, as intermediate filaments, are highly insoluble. NETs embedded in the outer membrane tend to bind cytoskeletal proteins and these properties together make them difficult to work with. NETs in the inner membrane have these same issues and in addition often bind chromatin. Thus, even fragments lacking membrane-spanning regions tend to be insoluble. On top of this, the complex organization of the NE and its dynamic nature, undergoing disassembly and reassembly with each cell cycle, makes standard methodologies such as FRAP, coIP, ChIP, and quantification by Western blot subject to additional constraints that require modifications of procedures. The extraordinary complexity of the nuclear pore complex (NPC)—the largest complex in biology—also leads to specific refinement of standard protocols.

This volume provides a wide range of protocols used in studying the NE, with special attention to the experimental adjustments that may be required to successfully investigate this complex organelle in cells from various organisms. Many of these modifications have been only passed on within the laboratories working for many years in the field. We feel this volume is particularly timely now that many new laboratories have joined this extremely dynamic and rapidly growing field.

Leicester, UK

Sue Shackleton

Oslo, Norway

Philippe Collas

Edinburgh, UK

Eric C. Schirmer
Contents

Preface ... v
Contributors .. xi

PART I NUCLEAR ENVELOPE ISOLATION

1 Isolation, Proteomic Analysis, and Microscopy Confirmation of the Liver Nuclear Envelope Proteome 3
 Nadia Korfali, Laurence Florens, and Eric C. Schirmer

2 Exploring the Protein Composition of the Plant Nuclear Envelope 45
 Xiao Zhou, Kentaro Tamura, Katja Graumann, and Iris Meier

3 High-Efficiency Isolation of Nuclear Envelope Protein Complexes from Trypanosomes .. 67
 Samson O. Obado, Mark C. Field, Brian T. Chait, and Michael P. Rout

PART II NUCLEAR ENVELOPE PROTEIN INTERACTIONS,
 LOCALIZATION, AND DYNAMICS

4 Superresolution Microscopy of the Nuclear Envelope
 and Associated Proteins .. 83
 Wei Xie, Henning F. Horn, and Graham D. Wright

5 Analyses of the Dynamic Properties of Nuclear Lamins
 by Fluorescence Recovery After Photobleaching (FRAP)
 and Fluorescence Correlation Spectroscopy (FCS) 99
 Shimi Takeshi, Chan-Gi Pack, and Robert D. Goldman

6 Probing Protein Distribution Along the Nuclear Envelope
 In Vivo by Using Single-Point FRAP 113
 Krishna C. Mudumbi and Weidong Yang

7 The Use of Two-Photon FRET–FLIM to Study Protein Interactions
 During Nuclear Envelope Fusion In Vivo and In Vitro 123
 Richard D. Byrne, Banafsheh Larijani, and Dominic L. Poccia

8 Identifying Protein-Protein Associations at the Nuclear
 Envelope with BioID ... 133
 Dae In Kim, Samuel C. Jensen, and Kyle J. Roux

9 In Situ Detection of Interactions Between Nuclear Envelope
 Proteins and Partners ... 147
 Alice Barateau and Brigitte Buendia

10 Methods for Single-Cell Pulse-Chase Analysis of Nuclear Components 159
 Marek Drozdz and David J. Vaux
Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation .. 177
Olga Tapia and Larry Gerace

Analysis of Meiotic Telomere Behavior in the Mouse 195
Jana Link, Ricardo Benavente, and Manfred Alsheimer

PART III NUCLEAR ENVELOPE INTERACTIONS WITH THE CYTOSKELETON

13 Identification and Validation of Putative Nesprin Variants 211
Flavia Autore, Catherine M. Shanahan, and Qiuping Zhang

14 Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting 221
James Carthew and Iakowos Karakesisoglou

15 The Use of Polyacrylamide Hydrogels to Study the Effects of Matrix Stiffness on Nuclear Envelope Properties 233
Rose-Marie Minaisah, Susan Cox, and Derek T. Warren

16 Cell Microharpooning to Study Nucleo-Cytoskeletal Coupling 241
Gregory Fedorchak and Jan Lammerding

17 Wound-Healing Assays to Study Mechanisms of Nuclear Movement in Fibroblasts and Myoblasts .. 255
Wakam Chang, Susumu Antoku, and Gregg G. Gundersen

18 Methods for Assessing Nuclear Rotation and Nuclear Positioning in Developing Skeletal Muscle Cells ... 269
Meredith H. Wilson, Matthew G. Bray, and Erika L.F. Holzbaur

19 Imaging Approaches to Investigate Myonuclear Positioning in Drosophila .. 291
Mafalda Azevedo, Victoria K. Schulman, Eric Folker, Mridula Balakrishnan, and Mary Baylies

PART IV NUCLEAR ENVELOPE-CHROMATIN INTERACTIONS

20 Mapping Nuclear Lamin-Genome Interactions by Chromatin Immunoprecipitation of Nuclear Lamins .. 315
Anja R. Oldenburg and Philippe Collas

21 Lamin ChIP from Chromatin Prepared by Micrococcal Nuclease Digestion .. 325
Isabelle Duband-Goulet

22 DamID Analysis of Nuclear Organization in Caenorhabditis elegans 341
Georgina Gómez-Saldívar, Peter Meister, and Peter Askjaer

23 The Application of DamID to Identify Peripheral Gene Sequences in Differentiated and Primary Cells .. 359
Michael I. Robson and Eric C. Schirmer

24 Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization 387
Craig S. Clements, Ural Bikkul, Mai Hassan Ahmed, Helen A. Foster, Lauren S. Godwin, and Joanna M. Bridger
25 Visualization of Genomic Loci in Living Cells with a Fluorescent CRISPR/Cas9 System 407
 Tobias Anton, Heinrich Leonhardt, and Yolanda Markaki

26 Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina 419
 Susana Gonzalo and Ray Kreienkamp

PART V NUCLEO-CYTOPLASMIC TRANSPORT

27 High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex 441
 Martin W. Goldberg

28 An In Vitro Assay to Study Targeting of Membrane Proteins to the Inner Nuclear Membrane 461
 Rosemarie Ungricht, Sumit Pawar, and Ulrike Kutay

29 Nuclear Protein Transport in Digitonin Permeabilized Cells 479
 Stephen A. Adam

30 Analysis of CRM1-Dependent Nuclear Export in Permeabilized Cells 489
 Ralph H. Kehlenbach and Sarah A. Port

31 SPEED Microscopy and Its Application in Nucleocytoplasmic Transport..... 503
 Jiong Ma, Joseph M. Kelich, and Weidong Yang

Index .. 519
Contributors

STEPHEN A. ADAM • Department of Cell and Molecular Biology, Northwestern University
Feinberg School of Medicine, Chicago, IL, USA

MAI HASSAN AHMED • Division of Biosciences, College of Life and Health Sciences,
Brunel University London, Uxbridge, UK

MANFRED ALSHEIMER • Department of Cell and Developmental Biology, Biocenter,
University of Würzburg, Würzburg, Germany

SUSUMU ANTOKU • Department of Pathology and Cell Biology, College of Physicians
and Surgeons, Columbia University, New York, NY, USA

TOBIAS ANTON • Department of Biology II, Biozentrum, Ludwig-Maximilians-Universität
München, Planegg-Martinsried, Germany

PETER ASKAER • Andalusian Center for Developmental Biology (CABD), CSIC/JA/
Universidad Pablo de Olavide, Seville, Spain

FLAVIA AUTORE • Randall Division of Cell and Molecular Biophysics, King's College
London, London, UK; British Heart Foundation Centre of Research Excellence,
Cardiovascular Division, King's College London, London, UK

MAFALDA AZEVEDO • Graduate Program in Basic and Applied Biology (GABBA), Institute
of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal; Program in
Developmental Biology, Sloan Kettering Institute, New York, NY, USA

MRIDULA BALAKRISHNAN • Program in Developmental Biology, Sloan Kettering Institute,
New York, NY, USA; Weill Graduate School at Cornell Medical College, New York,
NY, USA

ALICE BARATEAU • Unit of Functional and Adaptive Biology (BFA) CNRS UMR 8251,
Université Paris Diderot, Sorbonne Paris Cité, Paris, France

MARY BAYLIES • Program in Developmental Biology, Sloan Kettering Institute, New York,
NY, USA; Weill Graduate School at Cornell Medical College, New York, NY, USA

RICARDO BENAVENTE • Department of Cell and Developmental Biology, Biocenter,
University of Würzburg, Würzburg, Germany

URAL BIKKUL • Division of Biosciences, College of Life and Health Sciences, Brunel
University London, Uxbridge, UK

MATTHEW G. BRAY • Space Exploration Sector, Johns Hopkins Applied Physics Laboratory,
Laurel, MD, USA

JOANNA M. BRIDGER • Division of Biosciences, College of Life and Health Sciences,
Brunel University London, Uxbridge, UK

BRIGITTE BUENDIA • Unit of Functional and Adaptive Biology (BFA) CNRS UMR 8251,
Université Paris Diderot, Sorbonne Paris Cité, Paris, France

RICHARD D. BYRNE • Signaling Programme, The Babraham Institute, Cambridge, UK

JAMES CARTHEW • School of Biological and Biomedical Sciences, University of Durham,
Durham, UK

BRIAN T. CHAFT • Laboratory of Mass Spectrometry and Gaseous Ion Chemistry,
The Rockefeller University, New York, NY, USA
Contributors

Wakam Chang • Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
Craig S. Clements • Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, UK
Philippe Collas • Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
Susan Cox • Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London, UK
Marek Drozdz • Sir William Dunn School of Pathology, Oxford, UK
Isabelle Duband-Goulet • Pathophysiology of Striated Muscles Laboratory, Unit of Functional and Adaptive Biology, University of Paris Diderot-UMR CNRS 8251, Paris, France
Gregory Fedorchak • School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
Mark C. Field • Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
Laurence Florens • The Stowers Institute for Medical Research, Kansas City, MO, USA
Eric Folker • Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA; Biology Department, Boston College, Chestnut Hill, MA, USA
HeLEN A. Foster • Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, UK
Larry Gerace • Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
Lauren S. Godwin • Division of Biosciences, College of Life and Health Sciences, Brunel University London, Uxbridge, UK
Martin W. Goldberg • School of Biological and Biomedical Sciences, University of Durham, Durham, UK
Robert D. Goldman • Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
Georgina Gómez-Saldívar • Andalusian Center for Developmental Biology (CABD), CSIC/IA/Universidad Pablo de Olavide, Seville, Spain
Susana Gonzalo • Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St. Louis, MO, USA
Katja Graumann • Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
Gregg G. GunderSEN • Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
Erika L.F. HolzBAUR • Department of Physiology, The Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Henning F. Horn • College of Science and Engineering, Qatar Foundation, Hamad bin Khalifa University, Doha, Qatar
Samuel C. Jensen • Sanford Research, Sanford Children’s Health Research Center, Sioux Falls, SD, USA
Iakowos Karakesisoglou • School of Biological and Biomedical Sciences, University of Durham, Durham, UK
Ralph H. Kehlenbach • Faculty of Medicine, Institute of Molecular Biology, University of Göttingen, Göttingen, Germany
Joseph M. Kelich • Department of Biology, Temple University, Philadelphia, PA, USA
Dae In Kim • Sanford Research, Sanford Children’s Health Research Center, Sioux Falls, SD, USA

Nadia Korfali • The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, UK

Ray Kreienkamp • Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St. Louis, MO, USA

Ulrike Kutay • Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland

Jan Lammerding • School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA

Banafsheh Larijani • Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofisica (CSIC UPV/EHU), Leioa, Bizkaia, Spain; Research Center for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV), Leioa, Bizkaia, Spain

Heinrich Leonhardt • Department of Biology II, Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany

Jana Link • Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany; Department of Chromosome Biology, Max F. Perutz Laboratories (MFPL), Vienna, Austria

Jiong Ma • Department of Biology, Temple University, Philadelphia, PA, USA

Yolanda Markaki • Department of Biology II, Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany

Iris Meier • Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA

Peter Meister • Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland

Rose-Marie Minaisah • British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, London, UK

Krishna C. Mudumbai • Department of Biology, Temple University, Philadelphia, PA, USA

Samson O. Obado • Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA

Anja R. Oldenburg • Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway

Chan-Gi Pack • ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea

Sumit Pawar • Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; Molecular Life Sciences Ph.D. Program, Zurich, Switzerland

Dominic L. Poccia • Department of Biology, Amherst College, Amherst, MA, USA

Sarah A. Port • Faculty of Medicine, Institute of Molecular Biology, University of Göttingen, Göttingen, Germany

Michael I. Robson • The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK

Michael P. Rout • Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA

Kyle J. Roux • Sanford Children’s Health Research Center, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
ERIC C. SCHIRMER – Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
VICTORIA K. SCHULMAN – Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
SUE SHACKLETON – Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
CATHERINE M. SHANAHAN – British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London, UK
SHIMI TAKESHI – Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Human Genetics, University of Chicago, Chicago, IL, USA
KENTARO TAMURA – Department of Botany, Kyoto University, Kyoto, Japan
OLGA TAPIA – Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
ROSEMARIE UNGRICH – Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland; Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
DAVID J. VAUX – Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
DEREK T. WARREN – British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King’s College London, London, UK
MEREDITH H. WILSON – Department of Physiology, The Pennsylvania Muscle Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
GRAHAM D. WRIGHT – Institute of Medical Biology, A*STAR, Singapore, Singapore
WEI XIE – Institute of Medical Biology, A*STAR, Singapore, Singapore
WEIDONG YANG – Department of Biology, Temple University, Philadelphia, PA, USA
QIUPING ZHANG – British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London, UK
XIAO ZHOU – Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA