Carbohydrate-Based Vaccines

Methods and Protocols

Edited by

Bernd Lepenies

University of Veterinary Medicine, Research Center for Emerging Infections and Zoonoses, Hannover, Germany

Humana Press
Preface

Carbohydrates are the most abundant and structurally diverse molecules in nature. They are displayed on all cells in our body and form the so-called glycocalyx. However, carbohydrates are also present on pathogens such as viruses, bacteria, parasites, or fungi. These unique carbohydrate structures on the pathogen surface serve as “pathogen signatures” that are recognized as foreign by the host immune system and may finally induce a protective immune response. Since numerous glycan epitopes are highly pathogen-specific, they are promising candidates for carbohydrate-based vaccines.

The history of carbohydrate-based vaccines dates back to 1923 when Avery and Heidelberger identified the carbohydrate nature of the pneumococcal capsule derived from Streptococcus pneumoniae. Since then, tremendous progress has been made in the development of carbohydrate-based vaccines against infectious diseases as well as cancer. Some vaccines such as the Haemophilus influenzae type B, Neisseria meningitidis, or S. pneumoniae vaccine have already entered the clinic, while others are in the preclinical stage. This book aims to summarize the current status in this exciting field and details cutting-edge methods related to carbohydrate-based vaccines—from the identification of a suitable carbohydrate antigen via the preparation of glycoconjugate vaccines to the characterization of vaccine candidates for their use in preclinical and clinical studies.

In Chapter 1, Hütter and Lepenies give a historical overview on the development and success story of carbohydrate-based vaccines. Chapter 2 by Zimmermann and Lepenies discusses immunological aspects of polysaccharides and glycoconjugate vaccines and also highlights recent advances in the design of carbohydrate-based adjuvants. The central part of this book, the Methods section, starts with Chapter 3. A prerequisite for the preparation of carbohydrate-based vaccines is the identification of relevant pathogen-related glycans as described in Chapters 3 and 4. In Chapter 3, Xia and Gildersleeve present the glycan array platform to identify carbohydrate antigens including glycan microarray fabrication, microarray binding assays, and the analysis of microarray data. In Chapter 4, Ramsland, Turiel, and colleagues describe a protocol for the computational analysis of carbohydrate–protein interactions using the AutoMap software which might be a helpful tool for a rational selection of carbohydrate antigens. In Chapter 5, Anish, Seeberger, and colleagues provide a protocol for the generation of anti-carbohydrate monoclonal antibodies of high specificity, selectivity, and affinity that can be used for diagnostic and therapeutic purposes. The protocol given in Chapter 6 by Segura and colleagues details the opsonophagocytic assay as a correlate for protection to measure the functional capacities of vaccine candidate-raised antibodies.

The determination of pathogen-specific glycosylation patterns by suitable analytical tools and techniques is essential for carbohydrate antigen selection. Exemplary protocols are given in Chapters 7 and 8. In Chapter 7, Crispin and colleagues describe the glycan analysis of viral glycoproteins by ion mobility mass spectrometry, whereas in Chapter 8 Rapp and colleagues focus on the multiplexed capillary gel electrophoresis with laser-induced fluorescence detection technology (xCGE-LIF) for high-throughput glycan analysis.
The preparation of carbohydrate-based vaccines is the focus of Chapters 9 and 10. In Chapter 9, Lipinski and Bundle provide a strategy for the synthesis of glycoconjugate vaccines. In Chapter 10, Chiodo and Marradi present the preparation of gold nanoparticles as carriers for carbohydrate-based vaccines. In addition to the vaccine antigen, adjuvants are often crucial and impact vaccine efficacy. The protocol by Johannsen and Lepenies in Chapter 11 details the identification and characterization of carbohydrate-based adjuvants.

Chapters 12 and 13 deal with the characterization of carbohydrate-based vaccines. In Chapter 12, Berti and Ravenscroft focus on the characterization of carbohydrate vaccines by NMR spectroscopy whereas in Chapter 13 Harding and colleagues review the characterization of capsular polysaccharides and glycoconjugate vaccines by hydrodynamic methods. The final Chapter 14 by Jones reviews regulatory aspects of carbohydrate-based vaccines—a valuable and highly relevant addition to the book.

Although the present book is not an all-encompassing compendium of all methods related to carbohydrate-based vaccines and adjuvants, it contains a broad selection of relevant protocols. Thus, I expect this volume to be a valuable manual that will facilitate research in the field of carbohydrate-based vaccines.

Hannover, Germany

Bernd Lepenies
Contents

Preface .. v
Contributors ... ix

1 Carbohydrate-Based Vaccines: An Overview .. 1
 Julia Hütter and Bernd Lepenies

2 Glycans as Vaccine Antigens and Adjuvants:
 Immunological Considerations ... 11
 Stephanie Zimmermann and Bernd Lepenies

3 The Glycan Array Platform as a Tool to Identify
 Carbohydrate Antigens ... 27
 Li Xia and Jeffrey C. Gildersleeve

4 Antibody-Carbohydrate Recognition from Docked Ensembles
 Using the AutoMap Procedure ... 41
 Tamir Dingjan, Mark Agostino, Paul A. Ramsland, and Elizabeth Yuriev

5 Generation of Monoclonal Antibodies Against Defined Oligosaccharide Antigens ... 57
 Felix Broecker, Chakkumkal Anish, and Peter H. Seeberger

6 Murine Whole-Blood Opsonophagocytosis Assay to Evaluate Protection
 by Antibodies Raised Against Encapsulated Extracellular Bacteria 81
 Guillaume Goyette-Desjardins, René Roy, and Mariela Segura

7 Determination of N-linked Glycosylation in Viral Glycoproteins
 by Negative Ion Mass Spectrometry and Ion Mobility 93
 David Bitto, David J. Harvey, Steinar Halldorsson, Katie J. Doores,
 Laura K. Pritchard, Juba T. Huiskonen, Thomas A. Bowden,
 and Max Crispin

8 N-Glycosylation Fingerprinting of Viral Glycoproteins by xCGE-LIF 123
 René Hennig, Erdmann Rapp, Robert Kottler, Samanta Cajic,
 Matthias Borowiak, and Udo Reichl

9 Temporary Conversion of Protein Amino Groups to Azides:
 A Synthetic Strategy for Glycoconjugate Vaccines ... 145
 Tomasz Lipinski and David R. Bundle

10 Gold Nanoparticles as Carriers for Synthetic Glycoconjugate Vaccines 159
 Fabrizio Chiodo and Marco Marradi

11 Identification and Characterization of Carbohydrate-Based Adjuvants 173
 Timo Johannssen and Bernd Lepenies

12 Characterization of Carbohydrate Vaccines by NMR Spectroscopy 189
 Francesco Berti and Neil Ravenscroft
13 Characterization of Capsular Polysaccharides and Their Glycoconjugates by Hydrodynamic Methods. 211

14 Glycoconjugate Vaccines: The Regulatory Framework. 229
Christopher Jones

Index .. 253
Contributors

Ali Saber Abdelhameed • Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
Gary G. Adams • National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, UK; School of Health Sciences, Faculty of Medicine, University of Nottingham, Nottingham, UK
Mark Agostino • CHIRI Biosciences and Curtin Institute for Computation, School of Biomedical Sciences, Curtin University, Perth, WA, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia; BSC-IRB Joint Program in Computational Biology, Barcelona, Spain
Chakkumkal Anish • Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Bacterial Vaccines Discovery and Early Development, Janssen Pharmaceuticals (Johnson & Johnson), Leiden, The Netherlands
Francesco Berti • Research, GSK Vaccines, Siena, Italy
David Bitto • Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
Matthias Borowiak • glyXera GmbH, Magdeburg, Germany
Thomas A. Bowden • Division of Structural Biology, University of Oxford, Oxford, UK
Felix Broecker • Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
David R. Bundle • Department of Chemistry, Alberta Glycomics Centre, University of Alberta, Edmonton, AB, Canada
Samanta Cajic • Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany
Fabrizio Chiodo • Biofunctional Nanomaterials Unit, Laboratory of GlycoNanotechnology, CIC biomaGUNE, San Sebastian, Spain; Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
Max Crispin • Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
Tamir Dingjan • Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
Katie J. Doores • School of Medicine at Guy’s, King’s and St Thomas’ Hospitals, Guy’s Hospital, King’s College London, Great Maze Pond, London, UK
Jeffrey C. Gildersleeve • Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
Richard B. Gillis • National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, UK
Guillaume Goyette-Desjardins • Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
Steinar Halldorsson • Division of Structural Biology, University of Oxford, Oxford, UK
Contributors

Stephen E. Harding • National Centre for Macromolecular Hydrodynamics,
University of Nottingham, Sutton Bonington, UK

David J. Harvey • Department of Biochemistry, Oxford Glycobiology Institute,
University of Oxford, Oxford, UK

Renate Hennig • Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany

Julia Hütter • Department of Biomolecular Systems, Max Planck Institute of Colloids
and Interfaces, Potsdam, Germany; Department of Biology, Chemistry and Pharmacy,
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany;
Section for Virology, National Veterinary Institute, Technical University of Denmark,
Frederiksberg, Denmark

Juha T. Huiskonen • Division of Structural Biology, University of Oxford, Oxford, UK

Timo Johannessen • Department of Biomolecular Systems, Max Planck Institute of Colloids
and Interfaces, Potsdam, Germany; Department of Biology, Chemistry and Pharmacy,
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany;
University of Veterinary Medicine, Research Center for Emerging Infections and Zoonoses,
Hannover, Germany

Tomasz Lipinski • Department of Chemistry, Alberta Glycomics Centre, University of
Alberta, Edmonton, AB, Canada; Institute of Immunology and Experimental Therapy,
Polish Academy of Sciences, Wroclaw, Poland

Marco Marradi • Biomaterials Unit, Materials Division, IK-4-CIDETEC, San
Sebastian, Spain; Biofunctional Nanomaterials Unit, Laboratory of
Glyconanotechnology, CIC biomaGUNE, San Sebastian, Spain; Radiochemistry
Department and Biosurfaces Unit, CIC biomaGUNE, San Sebastian, Spain

Gordon A. Morris • Department of Chemical Sciences, School of Applied Science,
University of Huddersfield, Huddersfield, UK

Laura K. Pritchard • Department of Biochemistry, Oxford Glycobiology Institute,
University of Oxford, Oxford, UK

Paul A. Ramsland • Centre for Biomedical Research, Burnet Institute, Melbourne, VIC,
Australia; Department of Surgery Austin Health, University of Melbourne, Heidelberg,
VIC, Australia; Department of Immunology, Alfred Medical Research
and Education Precinct, Monash University, Melbourne, VIC, Australia

Erdmann Rapp • Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany

Neil Ravenscroft • Department of Chemistry, University of Cape Town, Rondebosch,
South Africa

Udo Reichl • Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany; Otto-von-Guericke University, Magdeburg, Germany

René Roy • Department of Chemistry, Université du Québec à Montréal, Montreal, QC,
Canada
PETER H. SEEGERGER • Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany

MARIELA SEGURA • Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada

LI XIA • Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA

ELIZABETH YURIEV • Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

STEPHANIE ZIMMERMANN • Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany