Recommender Systems for Technology Enhanced Learning
Recommender Systems for Technology Enhanced Learning

Research Trends and Applications

Foreword by Joseph A. Konstan
It was an inauspicious beginning in Barcelona in 2010. I had agreed to give talk to a workshop I hadn’t heard of before on Recommender Systems for Technology Enhanced Learning. That morning was sunny and hot, and the city’s usually efficient transit was on strike. I was advised that the easiest way to get to the workshop would be a long walk, so I set off for the workshop reflecting on the theme of my talk—that recommender systems had great potential in education, but that we weren’t there yet. Arriving hot and tired, I re-told the story I’d been telling for almost 15 years—about how recommending products was relatively easy, and that it was a quick win for the technology. Product recommenders certainly have improved quality of life—making shopping and television watching easier. But for people seeking a deeper impact, they may fall short.

By contrast, education raised all sorts of challenges for recommender systems. But it also presented the potential for a deep win—for making a difference that would affect the quality of life for billions of people. The technical challenges are formidable. Education is fundamentally interdependent and sequential. A learning module or lesson that may be ideal for a student at one time may be completely useless too early or too late. So in a very real way, technology-enhanced learning should be a “grand challenge” for recommender systems researchers—but at that time, it mostly wasn’t happening.

There were many reasons why. Making progress on educational recommenders presented at least three formidable obstacles to the typical recommender systems researcher. First, the researcher needed to gain understanding of education and learning research—any successful effort in education would require such an understanding. Second, the researcher would need real datasets—part of the challenge at the time was the lack of large datasets in general and of cases where there are more than one or two alternatives for given content modules specifically. And third, the researcher would need to learn how to conduct meaningful evaluation—this is no longer simply a question of which learning modules a student “prefers” but of what leads to actual learning, competence, and performance, not just on an immediate
post-test basis, but later as the knowledge gets integrated. So while I was happy to lead the cheers for the whole area of RecSysTEL, and enjoyed seeing the work being done at the time, I left that day somewhat discouraged that this field would remain in the margins.

Three years later, how things have changed! Who knew that we’d have online courses with tens and hundreds of thousands of students? And who would have expected entire campuses (physical and virtual) committed to the idea of scientific exploration of personalised education? We are surely entering an era of new interest and new possibilities.

But what’s most exciting is that we are entering that area through strength. As I look through the collection of articles in this book, I see a variety of advances that bring together the best ideas in recommender systems with important TEL applications. It is gratifying to see the expansion of available datasets that can allow researchers to explore ideas offline first, and even more gratifying to see the increased diversity of research approaches and questions—with issues ranging from trust to affect, and methods ranging from data analysis to field and experimental research.

So we are entering what may well become the golden age of RecSysTEL research, and this is a well-timed volume to help bring those new to the field up to speed.

Minneapolis, MN

Joseph A. Konstan
Preface

Technology-enhanced learning (TEL) aims to design, develop, and test socio-technical innovations that will support and enhance learning practices of both individuals and organisations. It is an application domain that generally addresses all types of technology research and development aiming to support teaching and learning activities, and considers meta-cognitive and reflective skills such as self-management, self-motivation, and effective informal and self-regulated learning. It was in 2007 when our first efforts to create opportunities for researchers working on topics related to recommender systems for TEL found their way in workshops like the Workshop on Social Information Retrieval for Technology Enhanced Learning (SIRTEL), the Workshop on Context-Aware Recommendation for Learning, and the Workshop Towards User Modelling and Adaptive Systems for All (TUMAS-A).

Still, it was only in 2010 when a really rare opportunity rose: during the same week of September and at the same location (Barcelona, Spain), two very prestigious and very relevant events (the fourth ACM Conference on Recommender Systems and the fifth European Conference on Technology Enhanced Learning) took place, giving us the chance to bring the two communities together. And so we did, by organising a joint event called the 1st Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL).

Since then, lots of things have happened to mainstream educational applications in recommender systems’ research. The most important achievement is an initial pool of datasets that have been collected and can be used to compare the outcomes of different TEL Recommender Systems to create a body of knowledge about the effects of different algorithms on learners. Furthermore, running research projects like Open Discovery Space\(^1\) and LinkedUp\(^2\) aim to create a publicly accessible Linked Data cloud\(^3\) that can be used as a reference dataset for RecSysTEL research. Along these infrastructure improvements various scientific events and publications

1. www.opendiscoveryspace.eu/
2. www.linkedup-project.eu/
have been realised. The most relevant are the organisation of subsequent editions of the RecSysTEL workshop with bi-annual periodicity; authoring a review article for the Recommender Systems Handbook; expanding it to an introductory handbook on Recommender Systems for Learning; and contributing (as co-editors or as authors) to several relevant Special Issues in scientific journals and specialised books.

We thought that this is a good time to build upon this previous experience and to collect some state-of-the-art contributions to a volume that will give a fresh view of the status of this area. Our interest was to collect a representative sample of high-quality manuscripts that will illustrate some important research trends, identify key challenges and demonstrate some innovative applications. This volume is the result of an open call that helped us collect, peer-review, select and propose for publication 14 articles (out of 49 proposed works; 29 % acceptance rate) that give a very good picture of the current status of research in recommender systems for TEL. The first four chapters (Karampiperis et al.; Cenichel et al.; Dietze et al.; Bienkowski and Klo) deal with user and item data that can be used to support recommendation systems and scenarios. The next four (Hulpus et al.; Santos et al.; Schwind and Buder; Tang et al.) focus on innovative methods and techniques for recommendation purposes. And the last six (Fazeli et al.; Bielikova et al.; Nowakowski et al.; Fernandez et al.; Sie et al.; Petertonkoker et al.) present examples of educational platforms and tools where recommendations are incorporated.

The bibliography covered by this book is available in an open group created at the Mendeley research platform and will continue to be enriched with additional references. We would like to encourage the reader to sign up for this group and to connect to the community of people working on these topics, gaining access to the collected bibliography but also contributing pointers to new relevant publications within this very fast developing domain.

We hope that you will enjoy reading this volume as much as we enjoyed editing it.

Athens, Greece
Nikos Manouselis
Heerlen, The Netherlands
Hendrik Drachsler
Leuven, Belgium
Katrien Verbert
Madrid, Spain
Olga C. Santos

4http://www.mendeley.com/groups/1969281/recommender-systems-for-learning/
Acknowledgements

We would like to thank all the people that are continuously inspiring and contributing to this application domain of recommender systems. We would particularly like to thank the people that are listed below (in alphabetical order), since they have contributed to the quality of this volume by reviewing the submissions received, providing valuable arguments that helped us select the most appropriate contributions as well as giving valuable feedback to the authors so that they improve their final articles. This list includes the people that have served as part of the RecSysTEL workshops Steering Committees and/or Program Committees as well as in the Review Committee for this volume.

Alexander Felfernig, Graz University of Technology (Austria)
Brandon Muramatsu, Massachusetts Institute of Technology (USA)
Carlos Delgado Kloos, University of Carlos III de Madrid (Spain)
Charalampos Karagiannidis, University of Thessaly (Greece)
Christina Schwind, Knowledge Media Research Center (Germany)
Christoph Rensing, Technische Universität Darmstadt (Germany)
Cristian Cechinel, Fundação Universidade Federal do Pampa (Brazil)
Cristóbal Romero, University of Cordoba (Spain)
David Massart, ZettaDataNet, LLC (USA)
Davinia Hernández-Leo, Universitat Pompeu Fabra (Spain)
Denis Gillet, Swiss Federal Institute of Lausanne (Switzerland)
Denis Parra, University of Pittsburgh (USA)
Eelco Herder, L3S (Germany)
Elina Megalou, Computer Technology Institute and Press – Diophantus (Greece)
Erik Duval, Katholieke Universiteit Leuven (Belgium)
Felix Mödritscher, Vienna University of Economics and Business (Austria)
Fridolin Wild, Open University (UK)
Geert-Jan Houben, Technical University Delft (The Netherlands)
George Kyrgiazos, National Technical University of Athens (Greece)
Giannis Stoitsis, Agro-Know (Greece)
Hannes Ebner, Royal Institute of Technology (Sweden)
Hans-Christian Schmitz, Fraunhofer FIT (Germany)
Ivana Bosnic, University of Zagreb (Croatia)
Jad Najjar, Eummena (Belgium)
Jan Pawlowski, University of Jyväskylä (Finland)
Jesus G. Boticario, UNED (Spain)
Joel Duffin, Tatemae (USA)
Jon Dron, Athabasca University (Canada)
Joris Klerkx, Katholieke Universiteit Leuven (Belgium)
Julien Broisin, Université Paul Sabatier (France)
Katrin Borcea-Pfitzmann, Dresden University of Technology (Germany)
Leonardo Lezcano, University of Alcala (Spain)
Liliana Ardissono, Universita di Torino (Italy)
Maiga Chang, Athabasca University (Canada)
Martin Memmel, German Research Center for Artificial Intelligence (Germany)
Martin Wolpers, Fraunhofer FIT (Germany)
Miguel-Angel Sicilia, University of Alcala (Spain)
Mimi Recker, Utah State University (USA)
Nikolas Athanasiadis, Intrasoft Int. (Luxembourg)
Paul Libbrecht, Karlsruhe University of Education and Martin Luther University of Halle (Germany)
Pedro J. Munoz Merino, University of Carlos III de Madrid (Spain)
Peter Brusilovsky, University of Pittsburgh (USA)
Peter Scott, Open University (UK)
Ralf Klamma, RWTH Aachen University (Germany)
Rick D. Hangartner, Strands (USA)
Riina Vuorikari, European Schoolnet (Belgium)
Rita Kuo, Knowledge Square, Inc. (Taiwan)
Rosta Farzan, Carnegie Mellon University (USA)
Salvador Sanchez-Alonso, University of Alcala de Henares (Spain)
Sandy El Helou, Swiss Federal Institute of Lausanne (Switzerland)
Sergey Sosnovsky, DFKI GmbH (Germany)
Sotiris Konstantinidis, University of Athens (Greece)
Stavros Demetriades, Aristotle University of Thessaloniki (Greece)
Stefan Dietze, University Hanover, (Germany)
Stefanie Lindstaedt, Know-Center Graz (Austria)
Sten Govaerts, K.U.Leuven (Belgium)
Tiffany Tang, Kean University (USA)
Toby Dragon, Saarland University (Germany)
Tomislav Šmuc, Rudjer Bošković Institute (Croatia)
Tsukasa Hirashima, Hiroshima University (Japan)
Wolfgang Greller, Open University of the Netherlands (Netherlands)
Wolfgang Nejdl – L3S & Leibniz Universitat (Germany)
Wolfgang Reinhardt, University of Paderborn (Germany)
Xavier Ochoa, Escuela Superior Politecnica del Litoral (Ecuador)
The compilation of the work presented in this book has been carried out with European Commission and national funding support. More specifically, the involvement of Nikos Manouselis has been supported by the EU project Open Discovery Space (ODS)—297229 of the CIP PSP Programme (http://opendiscoveryspace.eu), the work of Hendrik Drachsler by the EU project LinkedUp—317620 of the FP7 Programme, and the work of Olga C. Santos by the EU project “European Unified Approach for Accessible Lifelong learning” (EU4ALL)—034778 of the IST FP6 (http://www.eu4all-project.eu/) and the national project “Multimodal approaches for Affective Modelling in Inclusive Personalized Educational scenarios in intelligent Contexts” (MAMIPEC) funded by the Spanish Ministry of Science and Innovation (TIN2011-29221-C03-01). Katrien Verbert is a post-doctoral fellow of the Research Foundation—Flanders (FWO). This publication reflects the views only of the authors, and the funding bodies cannot be held responsible for any use that may be made of the information contained therein.
Contents

Part I User and Item Data

Collaborative Filtering Recommendation of Educational Content in Social Environments Utilizing Sentiment Analysis Techniques 3
Pythagoras Karampiperis, Antonis Koukourikos, and Giannis Stoitsis

Towards Automated Evaluation of Learning Resources Inside Repositories 25
Cristian Cechinel, Sandro da Silva Camargo, Salvador Sánchez-Alonso, and Miguel-Ángel Sicilia

A Survey on Linked Data and the Social Web as Facilitators for TEL Recommender Systems 47
Stefan Dietze, Hendrik Drachsler, and Daniela Giordano

The Learning Registry: Applying Social Metadata for Learning Resource Recommendations 77
Marie Bienkowski and James Klo

Part II Innovative Methods and Techniques

A Framework for Personalised Learning-Plan Recommendations in Game-Based Learning 99
Ioana Hulpuș, Conor Hayes, and Manuel Oliveira Fradinho

An Approach for an Affective Educational Recommendation Model 123
Olga C. Santos, Jesus G. Boticario, and Ángeles Manjarrés-Riesco

The Case for Preference-Inconsistent Recommendations 145
Christina Schwind and Jürgen Buder
Further Thoughts on Context-Aware Paper Recommendations for Education ... 159
Tiffany Y. Tang, Pinata Winoto, and Gordon McCalla

Part III Platforms and Tools

Towards a Social Trust-Aware Recommender for Teachers 177
Soude Fazeli, Hendrik Drachsler, Francis Brouns, and Peter Sloep

ALEF: From Application to Platform for Adaptive Collaborative Learning ... 195
Mária Bieliková, Marián Šimko, Michal Barla, Jozef Tvarožek, Martin Labaj, Róbert Móro, Ivan Srba, and Jakub Ševcech

Two Recommending Strategies to Enhance Online Presence in Personal Learning Environments ... 227
Samuel Nowakowski, Ivana Ognjanović, Monique Grandbastien, Jelena Jovanovic, and Ramo Šendelj

Recommendations from Heterogeneous Sources in a Technology Enhanced Learning Ecosystem ... 251
Alejandro Fernández, Mojisola Erdt, Ivan Dackiewicz, and Christoph Rensing

COCOON CORE: CO-author REcommendations Based on Betweenness Centrality and Interest Similarity 267
Rory L.L. Sie, Bart Jan van Engelen, Marlies Bitter-Rijpkema, and Peter B. Sloep

Scientific Recommendations to Enhance Scholarly Awareness and Foster Collaboration ... 283
Jan Petertonkoker, Wolfgang Reinhardt, Junaid Surve, and Pragati Sureka