Preface

Starting from the late 1970s, the biofilm’s pioneers Bill Costerton and Niels Hoiby have provided significant information on the ability of microorganisms to stick on biotic and abiotic surfaces and to build communities of cells closely interacting with each other within a self-produced exopolysaccharide matrix. However, only since the early 1990s it has been possible to observe, by a confocal laser scanning microscope, living biofilms of *Pseudomonas aeruginosa*, *Pseudomonas fluorescens*, and *Vibrio parahaemolyticus*, stained with viable fluorescent probes. Biofilms were found to be highly hydrated open structures constituted of 73 to 98% of extracellular substances and large void spaces allowing the circulation of nutrients and signaling molecules and the removal of microbial catabolites. Thus, the so-called mushroom model was proposed to schematically represent the tridimensional structure of these microbial communities, the dynamics of their sessile growth, and the main interactions among the cells and the surrounding environment.

This novel view of the microbial world has led us in the last decades to the consciousness of the predominance of biofilms not only in natural or engineered ecosystems but also in the human body. As biofilms in the different niches are concerned, a new awareness has been acquired on the pivotal role that these sessile-growing communities of microorganisms play in a number of environmental processes: from the biofouling to the biocorrosion of the pipelines of concrete wastewater pipes, to the clogging of the pipelines in the dairy industry, to the deterioration of stones, frescoes, paintings, books, and other ancient remains. And again, the understanding that most of the chronic infections in humans, including the oral, lung, vaginal, and foreign body-associated infections, are biofilm-based, has prompted the need to design new and properly focused preventive and therapeutic strategies for these diseases. In this framework, the consensus conference organized in 2013 by Niels Hoiby under the umbrella of the Study Group for Biofilms of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) deserves to be mentioned. The objective of this initiative, made possible by the active contribution of a selected number of scientists working on biofilms of medical interest, has been to draft the “ESCMID guidelines for the diagnosis and treatment of biofilm infections” to be published early in 2014. Of course, the detailed description of most of the better established and validated experimental procedures to investigate microbial biofilms contained in the present book will be of paramount importance for all of those involved in the practical application of the abovementioned guidelines.

In fact, most of the currently available methods and protocols to investigate bacterial and fungal biofilms have been exhaustively illustrated and critically annotated in the 25 chapters by authors well known for their relevant experience in the respective fields. The book has joined together microbiologists and specialists in infectious diseases, hygiene, and public health involved in exploring different aspects of microbial biofilms as well as in designing new methods and/or developing innovative laboratory protocols. Chapters have been subgrouped by dividing the experimental approaches suitable for studying biofilms in health and disease from those more appropriate to assay antibiofilm compounds or evaluate antimicrobial strategies and from those regarding the application of methods to detect
biofilms growing in the environment or affecting manufacturing plants. In the whole, readers will have at their disposal a precious working tool to perform experiments focused on both the structural and functional properties of single- and multi-species biofilms as well as their response to matrix-dissolving agents, biocides, sanitizers, and antimicrobial molecules. In this regard, advanced techniques such as the multiplex fluorescence in situ hybridization and the chip calorimetry, and innovative antibiofilm strategies as the photodynamic therapy or the bacteriophage attack, are described. Microbiological methods for in vitro screening of bacterial biofilm inhibitors and antifungal compounds are also detailed. Researchers interested in methods based on in vitro or in vivo biofilm observations, in static or dynamic conditions, by fluorescence, confocal, and scanning electron microscopy, will find in this book all the relative information provided by expert guides, each chapter being rich of useful practical suggestions and warnings. Specific chapters also deal with the most advanced animal models, including the nonmammalian ones, to investigate bacterial and fungal biofilms. Other contributions of particular interest are those related to assay protocols for staphylococcal and enterococcal quorum sensing systems, to study the pharmacokinetics and pharmacodynamics of antibiotics in biofilm-related infections, and to evaluate the efficacy of antibiotic-loaded polymers and polymeric nanoparticles.

I am sure that all the “biofilm’s lovers” will enjoy this book.

Rome, Italy
Gianfranco Donelli
Contents

Preface ... v
Contributors .. xi

PART I INVESTIGATIONS ON BIOFILMS IN HEALTH AND DISEASE

1 Methods for Dynamic Investigations of Surface-Attached
In Vitro Bacterial and Fungal Biofilms 3
Claus Sternberg, Thomas Bjarnsholt, and Mark Shirtliff

2 Aqueous Two-Phase System Technology for Patterning
Bacterial Communities and Biofilms 23
Mohammed Dwidar, Shuichi Takayama, and Robert J. Mitchell

3 Quorum Sensing in Gram-Positive Bacteria: Assay Protocols
for Staphylococcal agr and Enterococcal fpr Systems 33
Akane Shojima and Jiro Nakayama

4 Advanced Techniques for In Situ Analysis of the Biofilm Matrix
(Structure, Composition, Dynamics) by Means
of Laser Scanning Microscopy 43
Thomas R. Neu and John R. Lawrence

5 Multiplex Fluorescence In Situ Hybridization (M-FISH)
and Confocal Laser Scanning Microscopy (CLSM)
to Analyze Multispecies Oral Biofilms 65
Lamprini Karygianni, Elmar Hellwig, and Ali Al-Ahmad

6 Field Emission Scanning Electron Microscopy of Biofilm-Growing
Bacteria Involved in Nosocomial Infections 73
Claudia Vuotto and Gianfranco Donelli

7 Experimental Approaches to Investigating the Vaginal
Biofilm Microbiome .. 85
Marc M. Baum, Manjula Gunawardana, and Paul Webster

8 Imaging Bacteria and Biofilms on Hardware and Periprosthetic
Tissue in Orthopedic Infections 105
Laura Nistico, Luanne Hall-Stoodley, and Paul Stoodley

9 Animal Models to Evaluate Bacterial Biofilm Development 127
Kim Thomsen, Hannah Trostrup, and Claus Moser

10 Animal Models to Investigate Fungal Biofilm Formation 141
Jyotsna Chandra, Eric Pearlman, and Mahmoud A. Ghannoun

11 Nonmammalian Model Systems to Investigate Fungal Biofilms .. 159
Marios Arvanitis, Beth Burgwyn Fuchs, and Eleftherios Mylonakis
PART II INVESTIGATIONS ON ANTI-BIOFILM COMPOUNDS AND STRATEGIES

12 Microbiological Methods for Target-Oriented Screening of Biofilm Inhibitors ... 175
 Livia Leoni and Paolo Landini

13 In Vitro Screening of Antifungal Compounds Able to Counteract Biofilm Development 187
 Marion Girardot and Christine Imbert

14 Biofilm Matrix-Degrading Enzymes .. 203
 Jeffrey B. Kaplan

15 Efficacy Evaluation of Antimicrobial Drug-Releasing Polymer Matrices ... 215
 Iolanda Francolini, Antonella Piozzi, and Gianfranco Donelli

16 Antibiotic Polymeric Nanoparticles for Biofilm-Associated Infection Therapy ... 227
 Wean Sin Cheow and Kunn Hadinoto

17 Pharmacokinetics and Pharmacodynamics of Antibiotics in Biofilm Infections of Pseudomonas aeruginosa In Vitro and In Vivo ... 239
 Wang Hengzhuang, Niels Høiby, and Oana Ciofu

18 Contribution of Confocal Laser Scanning Microscopy in Deciphering Biofilm Tridimensional Structure and Reactivity .. 255
 Arnaud Bridier and Romain Briandet

19 Chip Calorimetry for Evaluation of Biofilm Treatment with Biocides, Antibiotics, and Biological Agents 267
 Frida Mariana Morais, Friederike Buchholz, and Thomas Maskow

20 Bacteriophage Attack as an Anti-biofilm Strategy 277
 Sanna Sillankorva and Joana Azeredo

21 Photodynamic Therapy as a Novel Antimicrobial Strategy Against Biofilm-Based Nosocomial Infections: Study Protocols .. 287
 Francesco Giuliani

PART III INVESTIGATIONS ON BIOFILMS IN THE ENVIRONMENT AND MANUFACTURING PLANTS

22 Capturing Air–Water Interface Biofilms for Microscopy and Molecular Analysis ... 301
 Margaret C. Henk

23 Biofilm-Growing Bacteria Involved in the Corrosion of Concrete Wastewater Pipes: Protocols for Comparative Metagenomic Analyses 323
 Vicente Gomez-Alvarez
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes.</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Francesca Cappitelli, Federica Villa, and Andrea Polo</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Biofilms of Thermophilic Bacilli Isolated from Dairy Processing Plants and Efficacy of Sanitizers.</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Sara A. Burgess, Denise Lindsay, and Steve H. Flint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>379</td>
</tr>
</tbody>
</table>
Contributors

Ali Al-Ahmad • Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
Marios Arvanitis • Infectious Diseases Division, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
Joana Azeredo • Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, Portugal
Marc M. Baum • Oakcrest Institute of Science, Pasadena, CA, USA
Thomas Bjarnsholt • Department of International Health, Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
Romain Briandet • INRA, UMR 1319 Micalis, Jouy-en-Josas, France
Arnaud Bridier • IRSTEA, HBAN, Antony, France
Friederike Buchholz • Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
Sara A. Burgess • Institute of Food, Nutrition and Human Health, Massey University and Fonterra Research and Development Centre, Palmerston North, New Zealand
Beth Burgwyn Fuchs • Infectious Diseases Division, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
Francesca Cappitelli • Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
Jyotsna Chandra • Center for Medical Mycology and Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
Wean Sin Cheow • School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
Oana Ciofu • Department of Clinical Microbiology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
Gianfranco Donelli • Microbial Biofilm Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
Mohammed Dwidar • School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
Steve H. Flint • Institute of Food, Nutrition and Human Health, Massey University, Palmerston North 4474, New Zealand
Iolanda Francolini • Department of Chemistry, Sapienza University, Rome, Italy
Mahmoud A. Ghannoun • Center for Medical Mycology and Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, USA
Marion Girardot • Laboratory of ecology and biology of the interactions, Faculty of Medicine Pharmacy, University of Poitiers, Poitiers, France
Francesco Giuliani • Molteni Therapeutics S.r.l., Scandicci, Florence, Italy
VICENTE GOMEZ-ALVAREZ • U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
MANJULA GUNAWARDANA • Oakcrest Institute of Science, Pasadena, CA, USA
KUNN HADINOTO • School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
LUANNE HALL-STOODLEY • NIHR Wellcome Trust Clinical Research Facility, Southampton, UK; Center for Microbial Interface Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
ELMAR HELWIG • Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
MARGARET C. HENK • Louisiana State University, Baton Rouge, LA, USA
WANG HENGZHUANG • Department of Clinical Microbiology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
NIELS HOIBY • Department of Clinical Microbiology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
CHRISTINE IMBERT • Laboratory of ecology and biology of the interactions, Faculty of Medicine Pharmacy, University of Poitiers, Poitiers, France
JEFFREY B. KAPLAN • Department of Biology, American University, Washington, DC, USA
LAMPRINI KARYGIANNI • Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Freiburg, Germany
PAOLO LANDINI • Department of Biosciences, Università degli Studi di Milano, Milan, Italy
JOHN R. LAWRENCE • Environment Canada, Saskatoon, Saskatchewan, Canada
LIVIA LEONI • Department of Sciences, Università “Roma Tre”, Rome, Italy
DENISE LINDSAY • Fonterra Research and Development Centre, Palmerston North, New Zealand
FRIDA MARIANA MORAIS • Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
THOMAS MASKOW • Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
ELEFTHERIOS MYLONAKIS • Infectious Diseases Division, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
ROBERT J. MITCHELL • School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
CLAUS MOSER • Department of Clinical Microbiology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark; Department of International Health, Immunology, and Microbiology, Rigshospitalet-Copenhagen University, Copenhagen, Denmark
JIRO NAKAYAMA • Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoku, Japan
THOMAS R. NEU • Helmholtz Centre for Environmental Research, UFZ, Magdeburg, Germany
LAURA NISTICO • Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
ERIC PEARLMAN • Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
ANTONELLA PIOZZI • Department of Chemistry, Sapienza University, Rome, Italy
ANDREA POLO • Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Milan, Italy
MARK SHIRTLIFF • Department of Microbial Pathogenesis, Dental School and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
AKANE SHOJIMA • Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
SANNA SILLANKORVA • Centre of Biological Engineering, University of Minho, Campus de Gualtar Braga, Portugal
CLAUS STERNBERG • Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
PAUL STOODLEY • Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA, USA; National Center for Advanced Tribology, University of Southampton, Southampton, UK; Center for Microbial Interface Biology and Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
SHUICHI TAKAYAMA • School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Department of Biomedical Engineering and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA
KIM THOMSEN • Department of Clinical Microbiology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
HANNAH TRØSTRUP • Department of Clinical Microbiology, Rigshospitalet-Copenhagen University Hospital, Copenhagen, Denmark
FEDERICA VILLA • Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Milan, Italy
CLAUDIA VUOTTO • Microbial Biofilm Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
PAUL WEBSTER • Oakcrest Institute of Science, Pasadena, CA, USA