Infection by flaviviruses such as dengue virus serotypes (DENV 1–4), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBE), yellow fever virus (YFV), and West Nile virus (WNV) impacts millions of lives and causes tens of thousands of mortalities each year. Recent studies on global dengue burden indicated that there are at least 100 million human symptomatic infections annually. This original estimate has recently been revised in 2013 to about three times higher than the dengue burden estimate of the World Health Organization. The urban-breeding *Aedes aegypti* mosquito has spread the DENV to more than 100 countries around the world and ~50% of the world’s population is now estimated to be at risk. Dengue is a global public health emergency especially since there is no preventative vaccine or antiviral treatment for dengue disease. Usually, infection with any one of the four DENV serotypes leads to mild self-limiting dengue fever (DF) with lifelong immunity to that specific serotype. Epidemiological evidence suggests that 90% of the severe and potentially fatal dengue diseases, dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS) occur during secondary heterotypic infections where the protective antibodies from a previous infection become pathogenic through the Antibody Dependent Enhancement (ADE) phenomenon. The co-circulation of multiple serotypes in dengue epidemic countries increases the risk of severe dengue diseases due to ADE. Dengue has also reappeared in the United States of America: the combination of a low immunity in the population, increased mosquito vector activity, and the continuous introduction of virus from the endemic countries forms the right ingredient for explosive epidemics.

This edition of methods and protocols for dengue research is aimed at providing the increasing number of dengue researchers a one-stop protocol book contributed by some of the leading laboratories working on dengue. Chapters on dengue virus isolation from clinical samples, quantification of human antibodies against the virus, and assays to quantify the virus particles are included. The widely used mouse model to study dengue pathogenesis, vaccine, and antiviral efficacies is also described. New technologies to study the conformation of *cis*-acting elements in dengue viral RNA genome that contribute to its function in translation and replication by novel computational and experimental methods are described in this book for the first time. The dynamic dengue RNA molecule from its initial biogenesis to its final most stable conformation through multiple intermediate folding pathways is analyzed by the predictive Massively Parallel Genetic Algorithm (MPGAfold) with frequencies of occurrence of each stage. Selective 2’-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) analyzes the conformation of RNA experimentally. High-throughput SHAPE combines a novel chemical probing technology with reverse transcription, capillary electrophoresis, and secondary structure prediction software to determine RNA structure at a single nucleotide resolution. Next Generation Sequencing methodologies described here utilize high-throughput and massively parallel sequencing to track the viral genomes constantly changing under selective pressure imposed by environment. Cutting-edge cryo-electron microscopy technology reveals how the viruses also change their surface morphologies when they are subjected to environmental conditions under which the viruses...
grow and replicate their genomes. Moreover, the three-dimensional structures of the viral proteins are important for their function. One of the modern methods to achieve this objective, Small Angle X-ray Scattering (SAXS), is described here. Reverse genetic systems for different dengue virus serotypes to study viral replication using different reporter systems and virus-like particles to study viral entry, replication, and assembly are also described. The viral RNA codes for a number of enzymes that are important for its replication. Methods are described to measure quantitatively the various enzyme activities that are useful to screen for antivirals. Genome-wide screening methods and discovery of human and insect host cell proteins that are involved in virus life cycle are also included. The book contains 24 chapters, and we sincerely hope that the protocols contributed by the authors will form a valuable resource for dengue researchers.

We would like to thank Professor John Walker, the Chief Editor of the series, for his guidance. We also thank the help and guidance of the editors at Springer, especially David Casey, Tamara Cabrero, Patrick Marton, Anne Meagher, and Paul Wehn, as well as Priya Ranganathan, Project Manager at SPi Global, India, for their hard work in bringing these chapters to the final stage.

Washington, DC, USA
Singapore, Singapore

Radhakrishnan Padmanabhan
Subhash G. Vasudevan
Contents

Preface ... v
Contributors ... xi

PART I MODERN QUANTITATIVE VIROLOGICAL METHODS

1 Dengue Virus Growth, Purification, and Fluorescent Labeling 3
 Summer Zhang, Kuan Rong Chan, Hwee Cheng Tan, and Eng Eong Ooi
2 Isolation and Titration of Dengue Viruses
 by the Mosquito Inoculation Technique 15
 Milly M. Choy and Duane J. Gubler
3 Measuring Antibody Neutralization of Dengue Virus (DENV)
 Using a Flow Cytometry-Based Technique 27
 Ruklanthi de Alwis and Aravinda M. de Silva
4 Dengue Virus Purification and Sample Preparation
 for Cryo-Electron Microscopy ... 41
 Joanne L. Tan and Shee Mei Lok
5 Development of a Multiplex Bead-Based Assay
 to Monitor Dengue Virus Seroconversion 53
 Kaiting Ng and John E. Connolly
6 Pseudo-infectious Reporter Virus Particles for Measuring
 Antibody-Mediated Neutralization and Enhancement
 of Dengue Virus Infection .. 75
 Swati Mukherjee, Theodore C. Pierson, and Kimberly A. Dowd
7 Cell-Based Flavivirus Infection (CFI) Assay
 for the Evaluation of Dengue Antiviral Candidates
 Using High-Content Imaging .. 99
 Kah Hin Tan, Kitti Chan Wing Ki, Satoru Watanabe,
 Subhash G. Vasudevan, and Manoj Krishnan

PART II REVERSE GENETIC SYSTEMS TO STUDY VIRUS REPLICATION AND EVOLUTION

8 Development and Application of Dengue Virus Reverse Genetic Systems 113
 Andrew D. Davidson
9 Construction of Self-Replicating Subgenomic
 Dengue Virus 4 (DENV4) Replicon 131
 Sofia L. Alcaraz-Estrada, Rosa del Angel,
 and Radhakrishnan Padmanabhan
10 Targeted Mutagenesis of Dengue Virus Type 2 Replicon RNA
by Yeast In Vivo Recombination 151
Mark Manzano and Radhakrishnan Padmanabhan

11 Identification of Dengue-Specific Human Antibody Fragments
Using Phage Display .. 161
Moon Y.F. Tay, Chin Chin Lee, Subhash G. Vasudevan,
and Nicole J. Moreland

12 Next-Generation Whole Genome Sequencing of Dengue Virus 175
Pauline Poh Kim Aw, Paola Flores de Sessions, Andreas Wilm,
Long Truong Hoang, Niranjan Nagarajan, October M. Sessions,
and Martin Lloyd Hibberd

PART III MODERN METHODS TO STUDY CONFORMATION
OF RNA PROTEINS AND THEIR MOLECULAR INTERACTIONS

13 MPGAfold in Dengue Secondary Structure Prediction 199
Wojciech K. Kasprzak and Bruce A. Shapiro

14 Insights into Secondary and Tertiary Interactions
of Dengue Virus RNA by SHAPE 225
Joanna Sztuba-Solinska and Stuart F.J. Le Grice

15 Use of Small-Angle X-ray Scattering to Investigate the Structure
and Function of Dengue Virus NS3 and NS5 241
Kyung H. Choi and Marc Morais

16 Identification of Dengue RNA Binding Proteins
Using RNA Chromatography and Quantitative Mass Spectrometry 253
Alex M. Ward, J. Gunaratne, and Mariano A. Garcia-Blanco

17 Analysis of Affinity of Dengue Virus Protein
Interaction Using Biacore ... 271
Yin Hoe Yau and Susana Geifman Shochat

18 Functional Genomics Approach for the Identification
of Human Host Factors Supporting Dengue Viral Propagation 285
Nicholas J. Barrows, Sharon F. Jamison, Shelton S. Bradrick,
Caroline Le Sommer, So Young Kim, James Pearson,
and Mariano A. Garcia-Blanco

19 Investigating Dengue Virus Nonstructural
Protein 5 (NS5) Nuclear Import 301
Johanna E. Fraser, Stephen M. Rawlinson, Chunxiao Wang,
David A. Jans, and Kylie M. Wagstaff

PART IV IN VITRO ENZYME ASSAYS FOR ANTIVIRAL SCREENING

20 Small Molecule Inhibitor Discovery for Dengue Virus Protease
Using High-Throughput Screening 331
Mark Manzano, Janak Padia, and Radhakrishnan Padmanabhan

21 Construction of Dengue Virus Protease Expression
Plasmid and In Vitro Protease Assay for Screening
Antiviral Inhibitors .. 345
Huiguo Lai, Tadahisa Teramoto, and Radhakrishnan Padmanabhan
22 Construction of Plasmid, Bacterial Expression, Purification, and Assay of Dengue Virus Type 2 NS5 Methyltransferase...................... 361
Siwaporn Boonyasuppayakorn and Radhakrishnan Padmanabhan

PART V DENGUE ANIMAL MODEL FOR VACCINES AND ANTIVIRALS

23 Animal Models in Dengue... 377
Emily Plummer and Sujan Shresta

24 Evaluation of Dengue Antiviral Candidates In Vivo in Mouse Model.......................... 391
Satoru Watanabe and Subhash G. Vasudevan

Erratum to... E1

Index... 401
Contributors

SOFIA L. ALCARAZ-ESTRADA • Division de Medicina Genomica, Centro Medico Nacional“20 de Noviembre”-ISSSTE, Mexico D.F., Mexico

RUKNANTHI DE ALWIS • Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, NC, USA

ROSA DEL ANGEL • Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., Mexico

PAULINE POH KIM AW • Genome Institute of Singapore, Singapore, Singapore

NICHOLAS J. BARROWS • Program in Cell and Molecular Biology, Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA

SIVAPORN BOONYASUPPAYAKORN • Faculty of Medicine, Department of Microbiology and Immunology, Chulalongkorn University, Bangkok, Thailand

SHELTON S. BRADICK • Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA

KUAN RONG CHAN • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore

KYUNG H. CHOI • Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA

MILLY M. CHOY • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore

JOHN E. CONNOLLY • Singapore Immunology Network (SIgN), A*Star, Singapore

ANDREW D. DAVIDSON • Faculty of Medical and Veterinary Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK

KIMBERLY A. DOWD • Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

JOHANNA E. FRASER • Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia

MARIANO A. GARCIA-BLANCO • Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA

STUART F.J. LE GRICE • HIV Drug Resistance Program, RT Biochemistry Section, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

DUANE J. GUBLER • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore

J. GUNARATNE • Mass Spectrometry and Systems Biology Laboratory, Institute of Molecular and Cell Biology, Singapore, Singapore
MARTIN LLOYD HIBBERD • Genome Institute of Singapore, Singapore, Singapore
LONG TRUONG HOANG • Genome Institute of Singapore, Singapore, Singapore
YIN HOE YAU • Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
SHARON F. JAMISON • Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA
DAVID A. JANS • Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
WOJCIECH K. KASPRZAK • Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA; Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
KITTI CHAN WING KI • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
SO YOUNG KIM • Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA
MANOJ KRISHNAN • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
HUIGUO LAI • Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
CHIN CHIN LEE • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
SHEET MEI LOK • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
MARK MANZANO • Department of Microbiology–Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
MARC MORAIS • Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
NICOLE J. MORELAND • School of Biological Sciences, University of Auckland, Auckland, New Zealand
SWATI MUKHERJEE • Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
NIRANJAN NAGARAJAN • Genome Institute of Singapore, Singapore, Singapore
KAITING NG • Singapore Immunology Network (SiGN), A*Star, Singapore, Singapore
ENG EONG OOI • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
JANAK PADIA • Prime Time Life Sciences, LLC, Germantown, MD, USA
RADHAKRISHNAN PADMANABHAN • Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
JAMES PEARSON • Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA
THEODORE C. PIERSON • Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
EMILY PLUMMER • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
STEPHEN M. RAWLINSON • Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
Contributors

PAOLA FLOREZ DE SESSIONS • Genome Institute of Singapore, Singapore, Singapore
OCTOBER M. SESSIONS • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
BRUCE A. SHAPIRO • Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
SUSANA GEIFMAN SHOCHAT • Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
SUJAN SHRESTA • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
ARAVINDA M. DE SILVA • Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; The Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, NC, USA
CAROLINE LE SOMMER • Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, NC, USA
JOANNA SZTUBA-SOLINSKA • HIV Drug Resistance Program, RT Biochemistry Section, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
JOANNE L. TAN • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
HWEI CHENG TAN • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
KAH HIN TAN • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
MOON Y. F. TAY • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
TADAHISA TERAMOTO • Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
SUBHASH G. VASUDEVAN • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
KYLIE M. WAGSTAFF • Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
CHUNXIAO WANG • Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
ALEX M. WARD • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
SATORU WATANABE • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
ANDREAS WILM • Genome Institute of Singapore, Singapore, Singapore
SUMMER ZHANG • Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore