Erythrocytes as Drug Carriers in Medicine
Proceedings of the Sixth Meeting of the International Society for the Use of Resealed Erythrocytes, held July 25 – 28, 1996, in Irsee, Germany

ISBN 978-1-4899-0046-3
DOI 10.1007/978-1-4899-0044-9 (eBook)

Softcover reprint of the hardcover 1st edition 1997

10 9 8 7 6 5 4 3 2 1
All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher.
The sixth meeting on the use of resealed annealed red blood cells was held in Irsee, Germany by the International Society for the Use of Resealed Erythrocytes (ISURE) on July 25–28, 1996. Although earlier meetings focused on the technology toward development of methods and standardization for efficient, consistent encapsulation, most of the present studies now are directed toward the application use of these carrier blood cells. Basic studies now have been directed toward exploration of commercial applications. Indeed, clinical trials were initiated to evaluate the dose-response curves employing L-asparagenase in human patients. Also, studies have shown the use of thrombolytic agent in erythrocyte carriers with the use of human red blood cells to provide a new conceptual approach in thrombolytic therapy to prevent thrombosis in individuals with higher risk factors. For example, with the use of carrier red blood cells, the thrombolytic agents will have a greater potential of acting on clot formation without systemic activation and thus lower the risk of hemorrhage, which is always prevalent in the thrombolytic therapy. Erythrocyte carrier systems are still quite unique and useful as specific targeting agents with a prolonged, sustained action with minimal immunologic or other toxic effects. The stability of this carrier system provides greater applications, especially of enzymes and proteins, by minimizing immunologic reactions and enhancing stability. Each of these studies are directed to minimize the toxicity so that higher doses such as IL2 can be used and it permits the use of more toxic prodrugs such as 3'-azidothymidine homodinucleotide as an anti-HIV drug. The focus of erythrocyte carriers now appears to be in the area of applications—especially, commercial area, which is the logical sequence as this area of endeavors matures.
CONTENTS

1. A Model for the Assessment of Human Recombinant Interleukin 2 (RIL2) Coated Erythrocytes as a Delivery System for Immunotherapy 1
 R. B. Moyes and J. R. DeLoach

2. Human Recombinant Interleukin 2 Binds to Mouse Red Blood Cells via the Erythropoietin Receptor .. 13
 R. B. Moyes and J. R. DeLoach

3. In Vivo Survival of Human Energy-Replete Carrier Erythrocytes 25
 M. D. Bain, B. E. Bax, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers

4. The Entrapment of Polyethylene Glycol-Conjugated Adenosine Deaminase (Pegademase) and Native Adenosine Deaminase in Human Carrier Erythrocytes ... 31
 B. E. Bax, L. D. Fairbanks, M. D. Bain, H. A. Simmonds, and R. A. Chalmers

5. Use of Erythrocytes as a New Route of Administration of Fibrinolytic Agents. Preliminary Results .. 35
 B. Delahousse, R. Kravtzoff, and C. Ropars

 M. Giovine, S. Scarfi, A. Gasparini, E. Millo, G. Damonte, A. De Flora, M. Magnani, A. Fraternale, L. Rossi, R. Williams, and U. Benatti

7. Erythrocyte-Based Targeted Release to Macrophages of an Azidothymidine Homodinucleotide Prevents Retroviral Infection 51
 U. Benatti, M. Giovine, G. Damonte, A. De Flora, R. Williams, S. Gessani, G. Brandi, A. Casabianca, A. Fraternale, and M. Magnani

8. The Entrapment of Mannose-Terminated Glucocerebrosidase (Alglucerase) in Human Carrier Erythrocytes 59

9. Macrophage Protection by Nucleoside and Nucleotide Analogue Administration 63
 L. Rossi, A. Casabianca, A. Fraternale, G. F. Schiavano, G. Brandi, A. Antonelli, and M. Magnani
10. Inhibition of Murine AIDS by Combination of AZT and DDCTP-Loaded Erythrocytes ... 73
 A. Fraternale, A. Casabianca, L. Rossi, L. Chiarantini, G. Brandi, G. Aluigi,
 G. F. Schiavano, and M. Magnani

11. Red Blood Cells as a Glucocorticoids Delivery System 81
 M. D’Ascenzo, A. Antonelli, L. Chiarantini, U. Mancini, and M. Magnani

12. Organophosphorus Antagonism by Resealed Erythrocytes Containing Recombinant Paraoxonase ... 89
 J. L. Way, L. Pei, I. Petrikovics, D. McGuinn, C. Tamalinas, Q. Z. Hu,
 E. P. Cannon, and A. Zitzer

13. Biotinylation of Erythrocytes Prepares to Allow to Circulation-Stable Immunoerythrocytes Capable of Recognizing the Antigen 93
 J. C. Murciano, V. R. Muzykantov, and A. Herráez

14. Biochemical Properties of Alcohol Dehydrogenase and Glutamate Dehydrogenase Encapsulated into Human Erythrocytes by a Hypotonic-Dialysis Procedure .. 101
 S. Sanz, C. Lizano, M. I. Garín, J. Luque, and M. Pinilla

15. Influence of Chemical Modification on “in Vivo” and “in Vitro” Mouse Carrier Erythrocyte Survival and Recognition 109
 J. A. Jordán, F. J. Alvarez, J. C. Murciano, A. Lotero, A. Herráez,
 M. C. Tejedor, J. Luque, J. R. DeLoach, and J. C. Diez

16. Rat Carrier Erythrocytes Circulate and Arrive to Organs 119
 F. J. Alvarez, J. A. Jordán, J. C. Murciano, J. Luque, A. Herráez, J. C. Diez,
 and M. C. Tejedor

17. Encapsulation of Alcohol Dehydrogenase and Acetaldehyde Dehydrogenase into Human Erythrocytes by an Electroporation Procedure 129
 C. Lizano, S. Sanz, P. Sancho, J. Luque, and M. Pinilla

18. Pharmacokinetics of Doxorubicin in Patients with Lymphoproliferative Disorders after Infusion of Doxorubicin-Loaded Erythrocytes 137
 F. I. Ataullakhanov, V. G. Isaev, A. V. Kohno, E. V. Kulikova,
 E. N. Parovichnikova, V. G. Savchenko, and V. M. Vitvitsky

19. Binding of Daunorubicin and Doxorubicin to Erythrocytes Treated with Glutaraldehyde ... 143
 F. I. Ataullakhanov, E. V. Kulikova, and V. M. Vitvitsky

Index ... 149