PROTEIN CROSSLINKING
Nutritional and Medical Consequences
ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY

Editorial Board:
Nathan Back State University of New York at Buffalo
N. R. Di Luzio Tulane University School of Medicine
Bernard Halpern Collège de France and Institute of Immuno-Biology
Ephraim Katchalski The Weizmann Institute of Science
David Kritchevsky Wistar Institute
Abel Lajtha New York State Research Institute for Neurochemistry and Drug Addiction
Rodolfo Paoletti University of Milan

Recent Volumes in this Series

Volume 81
PHOSPHATE METABOLISM
 Edited by Shaul G. Massry and Eberhard Ritz • 1977

Volume 82
ATHEROSCLEROSIS: Metabolic, Morphologic, and Clinical Aspects
 Edited by George W. Manning and M. Daria Haust • 1977

Volume 83
FUNCTION AND BIOSYNTHESIS OF LIPIDS
 Edited by Nicolás G. Bazán, Rodolfo R. Brenner, and Norma M. Giusto • 1977

Volume 84
MEMBRANE TOXICITY
 Edited by Morton W. Miller, Adil E. Shamoo, and John S. Brand • 1977

Volume 85A
ALCOHOL INTOXICATION AND WITHDRAWAL — IIIa: Biological Effects of Alcohol
 Edited by Milton M. Gross • 1977

Volume 85B
ALCOHOL INTOXICATION AND WITHDRAWAL — IIIb: Studies in Alcohol Dependence
 Edited by Milton M. Gross • 1977

Volume 86A
PROTEIN CROSSLINKING: Biochemical and Molecular Aspects
 Edited by Mendel Friedman • 1977

Volume 86B
PROTEIN CROSSLINKING: Nutritional and Medical Consequences
 Edited by Mendel Friedman • 1977

Volume 87
HYPOthalamic PEPTIDE HORMONES AND PITUITARY REGULATION
 Edited by John C. Porter • 1977
PROTEIN CROSSLINKING
Nutritional and Medical Consequences

Edited by
Mendel Friedman
Western Regional Research Laboratory
Agricultural Research Service
U.S. Department of Agriculture
Berkeley, California

SPRINGER SCIENCE+BUSINESS MEDIA, LLC
Proceedings of the second half of a Symposium on Protein Crosslinking held in San Francisco, California, August 30-September 3, 1976, with additional invited contributions

Originally published by Plenum Press, New York in 1977
Softcover reprint of the hardcover 1st edition 1977

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher.
The word crosslinking implies durable combination of usually large, distinct elements at specific places to create a new entity that has different properties as a result of the union. In the case of proteins, such crosslinking often results in important changes in chemical, physical, functional, nutritional, and biomedical properties, besides physical properties simply related to molecular size and shape. (Nucleic acids, carbohydrates, glycoproteins, and other biopolymers are correspondingly affected.) Since proteins are ubiquitous, the consequences of their crosslinking are widespread and often profound. Scientists from many disciplines including organic chemistry, biochemistry, protein chemistry, food science, nutrition, radiation biology, pharmacology, physiology, medicine, and dentistry are, therefore, very much interested in protein crosslinking reactions and their implications.

Because protein crosslinking encompasses so many disciplines, in organizing the Symposium on Nutritional and Biochemical Consequences of Protein Crosslinking sponsored by the Protein Subdivision of the Division of Agricultural and Food Chemistry of the American Chemical Society, I sought participants with the broadest possible range of interests, yet with a common concern for theoretical and practical aspects of protein crosslinking.

An important function of a symposium is to catalyze progress by bringing together ideas and experiences needed for interaction among different, yet related disciplines. To my pleasant surprise, nearly everyone invited came to San Francisco to participate. Furthermore, those that could not come usually agreed to contribute a paper for the Proceedings. Many participants told me privately that they had made a special effort to come to San Francisco to help celebrate the combined Centennial of the American Chemical Society and Bicentennial of the United States. I am grateful for this friendly gesture. To supplement the verbal presentations further, the Proceedings include several closely related, invited contributions. The distinguished international participation from at least nine countries increases the authority and usefulness of the Proceedings.
These papers are being published in two volumes in the series Advances in Experimental Medicine and Biology under the following titles: PROTEIN CROSSLINKING: BIOCHEMICAL AND MOLECULAR ASPECTS (Part A) and PROTEIN CROSSLINKING: NUTRITIONAL AND MEDICAL CONSEQUENCES (Part B). The two volumes are intended to be complementary, but their interests necessarily overlap.

Part A, the first volume, encompasses detailed discussions of natural crosslinks such as disulfide and peptide bonds, various artificial crosslinks formed by means of bifunctional reagents, radiation-induced crosslinks, and techniques to determine crosslinks.

Ultraviolet and gamma radiations are widely used to increase vitamin D content of foods, to sterilize food and drug products, and to treat diseases such as psoriasis and cancer. However, our knowledge about the molecular and nutritional consequences of irradiating food products and other proteins and biopolymers is still imperfect. Such consequences include crosslink formation. Several contributions report recent results in these areas. The results directly concern those interested in radiation biology and cancer therapy as well as food scientists and food technologists responsible for balancing good and bad effects of radiation.

Part B, the second volume, includes detailed discussions of crosslink formation in food proteins through lysinoalanine, isopeptide bonds, and products derived from protein-carbohydrate reactions. Such crosslinks not only lower the nutritional quality and digestibility of food products but sometimes introduce toxicity. This volume discusses nutritional and biological consequences of crosslink formation in food proteins, various factors that govern crosslink formation, effects of crosslinks on protein structure, reactivity, and digestibility, and ways to minimize crosslinking.

Part B also discusses structural and tissue proteins, such as collagen and elastin, which contain many natural crosslinks derived from lysine. Several papers report evidence that these crosslinks are important in aging and connective tissue disease. The chemistry and biochemistry of such natural crosslinks are thus important to anyone concerned with the relation of nutrition, health, and aging.

I want to emphasize considerations supporting the diversity of the subject matter presented in these volumes and of contributors backgrounds and interests. The widest possible interaction of viewpoints and ideas is needed to transcend present limitations in our knowledge as expeditiously as possible and to catalyze progress in the field of crosslinking. Scientists from related disciplines need one another's results; results with different biopolymers need to be compared; scientists and physicians
responsible for practical applications need to share experiences and problems with basic researchers. These volumes bring together many elements needed for such interactions. The range of material includes a great variety of specific and general topics. This scope should interest at least a similar range of readers, but it challenges all of us to think seriously about subjects beyond our primary interests. It is my hope, therefore, that the reader will look not only to those articles of primary interest to him but to others as well and so profit by a broad overview.

I am particularly grateful to all contributors and participants for excellent cooperation, to Dr. Wilfred H. Ward for constructive contributions to several manuscripts, to my son Alan David Friedman for his help with the preparation of the subject index, to Dawn M. Thorne for final typing of several manuscripts, to Roy Oliver of Pierce Chemical Company and Dr. Rao Makineni of Bachem Fine Chemicals for financial assistance, and to the Protein Subdivision of the Division of Agricultural and Food Chemistry of the American Chemical Society for sponsoring the symposium. I hope that PROTEIN CROSSLINKING will be a valuable record and resource for further progress in this very active interdisciplinary field.

Finally, I dedicate this work to the late Professor S. Morris Kupchan, with whom I had the privilege of spending a post-doctoral year at the University of Wisconsin. His untimely death deprives us of a very great scientific benefactor whose twenty-year global search for natural anti-tumour protein (enzyme) alkylating compounds is just now beginning to bear fruit.

Mendel Friedman
Moraga, California
March, 1977

GENESIS 44:30...because the father's (Jacob's) life is crosslinked to his son's (Benjamin's)...

SAMPLUEL 18:1...Jonathan's soul was crosslinked to David's...
CONTENTS OF PART B

1. CROSSLINKING AMINO ACIDS — STEREOCHEMISTRY AND NOMENCLATURE... 1
 Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

2. BIOLOGICAL EFFECTS OF ALKALI-TREATED PROTEIN AND LYSINOALANINE: AN OVERVIEW................................. 29
 D. H. Gould and J. T. MacGregor, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

3. EDITOR'S NOTE.. 49

4. METABOLIC TRANSIT OF LYSINOALANINE (LAL) BOUND TO PROTEIN AND OF FREE RADIOACTIVE $[^{14}C]$-LYSINOALANINE........... 51
 Paul-André Pinot, Eliane Bujard and Maurice Arnaud, Nestlé Products Technical Assistance Co. Ltd., La Tour-de-Peilz, Switzerland

5. LYSINOALANINE FORMATION IN PROTEIN FOOD INGREDIENTS... 73
 M. Sternberg and C.Y. Kim, Miles Laboratories, Inc., Elkhart, Indiana

6. INHIBITORY EFFECT OF MERCAPTOAMINO ACIDS ON LYSINOALANINE FORMATION DURING ALKALI TREATMENT OF PROTEINS... 85
 John W. Finley, John T. Snow, Philip H. Johnston, and Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

7. CYSTINE-ALKALI REACTIONS IN RELATION TO PROTEIN CROSSLINKING.. 93
 Raymond S. Asquith and Michael S. Otterburn, Department of Industrial Chemistry, The Queen's University of Belfast, Belfast, Northern Ireland
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>NEW AMINO ACID DERIVATIVES FORMED BY ALKALINE TREATMENT OF PROTEINS</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>John W. Finley and Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(\alpha,\beta)-UNSATURATED AND RELATED AMINO ACIDS IN PEPTIDES AND PROTEINS</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Erhard Gross, National Institutes of Health, Bethesda, Maryland</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BEHAVIOR OF O-GLYCOSYL AND O-PHOSPHORYL PROTEINS IN ALKALINE SOLUTION</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>John R. Whitaker and Robert E. Feeney, Department of Food Science and Technology, University of California, Davis, California</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(^{35})S-SULFIDE INCORPORATION DURING ALKALINE TREATMENT OF KERATIN AND ITS RELATION TO LANTHIONINE FORMATION</td>
<td>177</td>
</tr>
<tr>
<td>12</td>
<td>LYSINOALANINE FORMATION IN WOOL AFTER TREATMENTS WITH SOME PHOSPHATE SALTS</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>C. Touloupis and A. Vassiliadis, Department of Industrial Chemistry, University of Athens, Athens, Greece</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>THE FORMATION AND CLEAVAGE OF LYSINOALANINE CROSSLINKS</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>G. Ebert and Ch. Ebert, Institute of Polymers, University of Marburg/L, West Germany</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ON THE SPECIFIC CLEAVAGE OF CYSTEINE CONTAINING PEPTIDES AND PROTEINS</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Ch. Ebert, G. Ebert, and G. Rossmeissl, Institute of Polymers, University of Marburg/L, West Germany</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>REACTIONS OF PROTEINS WITH DEHYDROALANINES</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Mendel Friedman, John W. Finley, and Lai-Sue Yeh, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NUTRITIONAL SIGNIFICANCE OF CROSSLINK FORMATION DURING FOOD PROCESSING</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Richard F. Hurrell and Kenneth J. Carpenter, Department of Applied Biology, University of Cambridge, Cambridge, England</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS OF PART B

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>THE FORMATION, ISOLATION AND IMPORTANCE OF ISOPePTIDES IN HEATED PROTEINS</td>
<td>Michael S. Otterburn, Michael Healy, and William Sinclair, The Queen's University of Belfast, Belfast, Northern Ireland</td>
<td>239</td>
</tr>
<tr>
<td>18</td>
<td>HEAT INDUCED CROSSLINKS IN MILK PROTEINS AND CONSEQUENCES FOR THE MILK SYSTEM</td>
<td>Henning Klostermeyer and Ernst H. Reimerdes, Institut für Chemie, Bundesanstalt für Milchforschung, Kiel, West Germany</td>
<td>263</td>
</tr>
<tr>
<td>19</td>
<td>THE COMPLETE ENZYMIC HYDROLYSIS OF CROSSLINKED PROTEINS</td>
<td>Brian Milligan and Leo A. Holt, Division of Protein Chemistry, CSIRO, Parkville, Victoria, Australia</td>
<td>277</td>
</tr>
<tr>
<td>20</td>
<td>CROSS-LINKING OF PROTEIN BY PEROXIDASE</td>
<td>Mark A. Stahmann, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin</td>
<td>285</td>
</tr>
<tr>
<td>21</td>
<td>A MATHEMATICAL ANALYSIS OF KINETICS OF CONSECUTIVE, COMPETITIVE REACTIONS OF PROTEIN AMINO GROUPS</td>
<td>Mendel Friedman and L. David Williams, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California</td>
<td>299</td>
</tr>
<tr>
<td>22</td>
<td>EFFECT OF MAILLARD BROWNING REACTION ON NUTRITIONAL QUALITY OF PROTEIN</td>
<td>M. Tanaka, M. Kimiagar, Tung-Ching Lee and C. O. Chichester, Department of Food Science and Technology, University of Rhode Island, Kingston, Rhode Island</td>
<td>321</td>
</tr>
<tr>
<td>23</td>
<td>AVAILABILITY OF THE TRUE SCHIFF'S BASES OF LYSINE. CHEMICAL EVALUATION OF THE SCHIFF'S BASE BETWEEN LYSINE AND LACTOSE IN MILK</td>
<td>Paul-André Finot, Eliane Bujard, Françoise Mottu, and Jean Mauron, Nestlé Products Technical Assistance Co. Ltd., La Tour-de-Peilz, Switzerland</td>
<td>343</td>
</tr>
<tr>
<td>24</td>
<td>THE BIOLOGICAL SIGNIFICANCE OF CARBOHYDRATE-LYSINE CROSSLINKING DURING HEAT-TREATMENT OF FOOD PROTEINS</td>
<td>Helmut F. Erbersdobler, Institute of Physiology, Faculty of Veterinary Medicine, University of Munich, Munich, West Germany</td>
<td>367</td>
</tr>
</tbody>
</table>
CONTENTS OF PART B

25. THE PHYSICAL ASPECTS WITH RESPECT TO WATER AND NON-ENZYMATIC BROWNING .. 379
Theodore P. Labuza, Rita M. Warren, and Henry C. Warmbier, Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota

26. OXIDATIVE BROWNING OF AMADORI COMPOUNDS FROM AMINO ACIDS AND PEPTIDES 419
Hironaga Hashiba, Ikunori Koshiyama, and Danji Fukushima, Noda Institute for Scientific Research, Noda-shi, Chiba-ken, Japan

27. THE POSSIBLE UTILIZATION OF THE 1-AMINO-1-DEOXY-2-KETOSE COMPOUNDS BETWEEN AMINO ACIDS AND CARBOHYDRATES AS FOODSTUFF INTEGRATORS 449
Giancarlo Barbiroli, Palmira Mazzaracchio, and Walter Ciusa, Istituto di Merceologia, University Bologna, Bologna, Italy

28. NOVEL FREE RADICALS FORMED BY THE AMINO-CARBONYL REACTIONS OF SUGARS WITH AMINO ACIDS, AMINES, AND PROTEINS ... 471
Mitsuo Namiki, Tateki Hayashi, and Yukio Ohta, Department of Food Science and Technology, Nagoya University, Nagoya, Japan

29. SOME CHEMICAL AND NUTRITIONAL PROPERTIES OF FEATHER PROTEIN ISOLATES CONTAINING VARYING HALF-CYSTINE LEVELS .. 503
John P. Cherry, Kay H. McWatters, Josephine Miller, and A. Lorne Shewfelt, Department of Food Science, University of Georgia, Georgia Station, Experiment, Georgia

30. EFFECT OF PROCESSING ON PROTEIN UTILIZATION BY RUMINANTS ... 531
Glen A. Broderick, Department of Animal Science, Texas A&M University, College Station, Texas

31. PROTECTED PROTEINS IN RUMINANT NUTRITION. IN VITRO EVALUATION OF CASEIN DERIVATIVES 545
Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California and Glen A. Broderick, Department of Animal Science, Texas A&M University, College Station, Texas

32. PROTEIN INTERRELATIONSHIPS IN ROUGHAGES AS AFFECTING RUMINANT DIETARY PROTEIN ADEQUACY 559
J. E. Knipfel, Research Station, Research Branch, Agriculture Canada, Swift Current, Saskatchewan, Canada
CONTENTS OF PART B

33. SOME THERAPEUTIC IMPLICATIONS OF THE CROSSLINKAGE THEORY OF AGING... 579
 Johan Bjorksten, Bjorksten Research Foundation, Madison, Wisconsin

34. CHEMISTRY OF COLLAGEN CROSSLINKING: RELATIONSHIP TO AGING AND NUTRITION.. 603
 Philip E. McClain, U. S. Department of Agriculture, Agricultural Research Service, Nutrition Institute, Beltsville, Maryland

35. NUTRITIONAL COPPER DEFICIENCY AND PENICILLAMINE ADMINISTRATION: SOME EFFECTS ON BONE COLLAGEN AND ARTERIAL ELASTIN CROSSLINKING... 619
 R. B. Rucker, JoAnn Murray, and R. S. Riggins, Departments of Nutrition and Orthopaedic Surgery, College of Agricultural and Environmental Science and School of Medicine, University of California, Davis, California

36. CHEMICAL BASIS FOR PHARMACOLOGICAL AND THERAPEUTIC ACTIONS OF PENICILLAMINE.. 649
 Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

37. LOCATION OF THE INTERMOLECULAR CROSSLINKING SITES IN COLLAGEN.. 675
 Norma P. Stimler and Marvin L. Tanzer, Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut

38. THE QUALITATIVE AND QUANTITATIVE CROSSLINK CHEMISTRY OF COLLAGEN MATRICES... 699
 Gerald L. Mechanic, Dental Research Center and Department of Biochemistry and Nutrition, University of North Carolina, Chapel Hill, North Carolina

39. STUDIES ON CROSS-LINKED REGIONS OF ELASTIN............. 709
 R. A. Anwar, G. E. Gerber, and K. M. Baig, Department of Biochemistry, University of Toronto, Toronto, Canada

SUBJECT INDEX... 729
CONTENTS OF PART A

1. BIOLOGICALLY IMPORTANT THIOL–DISULFIDE REACTIONS AND THE ROLE OF CYSTEINE IN PROTEINS: AN EVOLUTIONARY PERSPECTIVE... 1
 Robert C. Fahey, Department of Chemistry, University of California, San Diego, California

2. DISULFIDE CROSSLINKS AND THE SPECIFICITY OF PROTEIN TURNOVER IN PLANTS............................. 31
 Gary Gustafson and Clarence A. Ryan, Department of Agricultural Chemistry, Washington State University, Pullman, Washington

3. PROTEIN THIOL–DISULFIDE INTERCHANGE AND INTERFACING WITH BIOLOGICAL SYSTEMS................................. 43
 D. B. Wetlaufer, V. P. Saxena, A. K. Ahmed, S. W. Schaffer, P. W. Pick, K.-J. Oh, and J. D. Peterson
 Department of Chemistry, University of Delaware, Newark, Delaware

4. ON THE MECHANISM OF RENATURATION OF PROTEINS CONTAINING DISULFIDE BONDS.............................. 51
 Hiroshi Taniuchi, A. Seetharama Acharya, Generoso Andria, and Diana S. Parker, Laboratory of Chemical Biology, National Institutes of Health, Bethesda Maryland

5. DISULFIDE BONDS: KEY TO WHEAT PROTEIN FUNCTIONALITY..... 67
 F. R. Huebner, J. A. Bietz, and J. S. Wall, Northern Regional Research Center, Agricultural Research Service, USDA, Peoria, Illinois

6. CHEMICAL STRATEGY FOR STUDYING THE ANTIGENIC STRUCTURES OF DISULFIDE–CONTAINING PROTEINS:
 HEN EGG–WHITE LYSOZYME AS A MODEL......................... 89
 M. Z. Atassi, Department of Immunology, Mayo Medical School, Rochester, Minnesota
CONTENTS OF PART A

7. CROSSLINKING OF ANTIBODY MOLECULES BY BIFUNCTIONAL ANTIGENS
 Danute E. Nitecki, Virgil Woods, and Joel W. Goodman, Department of Microbiology, University of California, San Francisco, California
 139

8. MODIFICATION OF THE BIOLOGICAL PROPERTIES OF PLANT LECTINS BY CHEMICAL CROSSLINKING
 Reuben Lotan and Nathan Sharon, Department of Biophysics, The Weizmann Institute of Science, Rehovot, Israel
 149

9. INTRODUCTION OF ARTIFICIAL CROSSLINKS INTO PROTEINS
 Rosa Uy and Finn Wold, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota
 169

10. SYNTHESIS AND APPLICATION OF NEW BIFUNCTIONAL REAGENTS
 Wolfgang E. Trommer, Klaus Friebel, Hans-Hermann Kiltz, and Hans-Jörg Kolkenbrock, Lehrstuhl für Biochemie, Ruhr-Universität Bochum, West Germany
 187

11. SYNTHESIS AND APPLICATION OF CLEAVABLE AND HYDROPHILIC CROSSLINKING REAGENTS
 Hans J. Schramm and Thomas Dülffer, Abteilung für Strukturforschung I, Max-Planck-Institut für Biochemie, Martinsried, West Germany
 197

12. COMPARISON OF HYDROPHOBIC AND STRONGLY HYDROPHILIC CLEAVABLE CROSSLINKING REAGENTS IN INTERMOLECULAR BOND FORMATION IN AGGREGATES OF PROTEINS OR PROTEIN-RNA
 H. Fasold, H. Bäumert, and G. Fink, Institut für Biochemie, Universität Frankfurt, West Germany
 207

13. CROSSLINKING OF RIBOSOMES BY CLEAVABLE BIFUNCTIONAL MERCAPTOIMIDATES
 Robert R. Traut and James W. Kenny, Department of Biological Chemistry, School of Medicine, University of California, Davis, California
 215

14. ON THE INTRODUCTION OF DISULFIDE CROSSLINKS INTO FIBROUS PROTEINS AND BOVINE SERUM ALBUMIN
 Ch. Ebert, G. Ebert, and H. Knipp, Institute of Polymers, University of Marburg/L, West Germany
 235
CONTENTS OF PART A

15. THIOLATION AND DISULFIDE CROSSLINKING OF INSULIN TO FORM MACROMOLECULES OF POTENTIAL THERAPEUTIC VALUE. 247
 M. Mahbouba and H. J. Smith, Welsh School of Pharmacy, University of Wales Institute of Science and Technology, Cardiff, S. Wales, United Kingdom

16. CROSSLINKED INSULINS: PREPARATION, PROPERTIES AND APPLICATIONS. 261
 Dietrich Brandenburg, Hans-Gregor Gattner, Winrich Schermutzki, Achim Schüttler, Johanna Uschkoreit, Josef Weimann, and Axel Wollmer, Deutsches Wollforschungsinstitut, Aachen, West Germany

17. THE ENZYMIC DERIVATION OF CITRULLINE RESIDUES FROM ARGinine RESIDUES IN SITU DURING THE BIOSYNTHESIS OF HAIR PROTEINS THAT ARE CROSS-LINKED BY ISOPEPTIDE BONDS. 283
 George E. Rogers and Lindsay D. Taylor, Department of Biochemistry, University of Adelaide, Australia

18. THERMODYNAMICS OF CROSSLINKS. 295
 John A. Rupley, Robert E. Johnson, Patricia H. Adams, Department of Chemistry, University of Arizona, Tucson, Arizona

19. PHYSICAL AND CHEMICAL CONSEQUENCES OF KERATIN CROSSLINKING, WITH APPLICATION TO THE DETERMINATION OF CROSSLINK DENSITY. 307
 Emory Menefee, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

20. AN X-RAY DIFFRACTION STUDY OF THERMALLY-INDUCED STRUCTURAL CHANGES IN α-KERATIN. 329
 Kay Sue (Lee) Gregorski, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

21. INTRODUCTION OF NEW CROSSLINKS INTO PROTEINS. 345
 Klaus Ziegler, Irene Schmitz, and Helmut Zahn, Deutsches Wollforschungsinstitut, Aachen, West Germany

22. COMPARISON OF WOOL REACTIONS WITH SELECTED MONO- AND BIFUNCTIONAL REAGENTS. 355
 N. H. Koenig and Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California
CONTENTS OF PART A

23. THE EFFECTS OF ETHYLENE GLYCOL ON WOOL FIBERS............ 383

Alan D. Elbein and Y. T. Pan, Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas

25. KINETIC STUDIES OF IMMOBILIZED α-CHYMOTRYPsin IN APOLAR SOLVENTS................................. 405
Myron L. Bender, A. B. Cottingham, Lee K. Sun, and K. Tanizawa, Division of Biochemistry, Department of Chemistry, Northwestern University, Evanston, Illinois

26. FACTORS AFFECTING CYANOBOROHYDRIDE REDUCTION OF AROMATIC SCHIFF'S BASES IN PROTEINS...................... 415
Leroy Chauffe and Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

27. CHEMISTRY OF THE CROSSLINKING OF COLLAGEN DURING TANNING.. 425

28. CHEMICAL MODIFICATION OF COLLAGEN AND THE EFFECTS ON ENZYME-BINDING: MECHANISTIC CONSIDERATIONS............. 441
Jack R. Giacin and Seymour G. Gilbert, Food Science Department, Cook College, Rutgers University, New Brunswick, New Jersey

29. STRATEGIES IN THE RACEMIZATION-FREE SYNTHESIS OF POLYTRipePTIDE MODELS OF COLLAGEN....................... 473
Rao S. Rapaka, D. E. Nitecki, and Rajendra S. Bhatnagar, University of California San Francisco, California

30. CONFORMATIONAL PROPERTIES OF POLYPEPTIDE MODELS OF COLLAGEN... 491
Rajendra S. Bhatnagar and Rao S. Rapaka, University of California, San Francisco, California and V. S. Ananthanarayanan, Indian Institute of Science, Bangalore, India
CONTENTS OF PART A

31. IONIZING RADIATION-INDUCED CROSSLINKING IN PROTEINS.. 509
Osamu Yamamoto, Research Institute for Nuclear Medicine and Biology, Hiroshima University, Hiroshima, Japan

32. PEROXYDISULFATE ANION-INDUCED CROSSLINKING OF PROTEINS................................. 549
Howard L. Needles, Division of Textiles and Clothing, University of California, Davis, California

33. CROSSLINKING IN THE RADIOLYSIS OF SOME ENZYMES AND RELATED PROTEINS............... 557
K. R. Lynn, Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada

34. ISOLATION AND CHARACTERIZATION OF STABLE PROTEIN-DNA ADDUCTS INDUCED IN CHROMATIN BY ULTRAVIOLET LIGHT.. 571
Gary F. Strniste, Julia M. Hardin, and S. Carlton Rall, Cellular and Molecular Biology Group, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

35. IDENTIFICATION OF BINDING SITES ON THE E. COLI RIBOSOME BY AFFINITY LABELING........ 595
Barry S. Cooperman, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania

36. PHOTOINDUCED NUCLEIC ACID-PROTEIN CROSSLINKAGE IN RIBOSOMES AND RIBOSOME COMPLEXES..................... 611
Lester Gorelic, Department of Chemistry, Wayne State University, Detroit, Michigan

37. CROSSLINKING OF NUCLEIC ACIDS AND PROTEINS BY BISULFITE.................................. 633
Robert Shapiro and Aviv Gazit, Department of Chemistry, New York University, New York, New York

38. CROSS-LINKING OF AMINO ACIDS BY FORMALDEHYDE. PREPARATION AND 13C NMR SPECTRA OF MODEL COMPOUNDS.... 641
David P. Kelly, M. K. Dewar, R. B. Johns, Shao Wei-Let, and J. F. Yates, Department of Organic Chemistry, University of Melbourne, Parkville, Victoria, Australia
CONTENTS OF PART A

39. ELECTRON MICROSCOPY OF AN OLIGOMERIC PROTEIN STABILIZED BY POLYFUNCTIONAL CROSS-LINKING............ 649
C. N. Gordon, Department of Molecular Biology and Biochemistry, University of California, Irvine, California

40. FISH MYOFIBRILLAR PROTEIN AND LIPID INTERACTION IN AQUEOUS MEDIA AS DETECTED BY ISOTOPE LABELING, SUCROSE GRADIENT CENTRIFUGATION, POLYACRYLAMIDE ELECTROPHORESIS, AND ELECTRON PARAMAGNETIC RESONANCE................................ 657
Soliman Y. K. Shenouda, National Marine Fisheries Service, Gloucester, Maine and George M. Pigott, Institute for Food Science and Technology, College of Fisheries, University of Washington, Seattle, Washington

41. GAS-LIQUID CHROMATOGRAPHY AND MASS SPECTROMETRY OF LANTHIONINE, LYSINOALANINE, AND S-CARBOXYETHYLGLYSTEINE.. 687
Munenori Sakamoto, Fumitaka Nakayama, and Koh-Ichi Kajiyama, Department of Textile and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

42. MASS SPECTRA OF CYSTEINE DERIVATIVES.................. 713
Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California

43. A NUCLEAR MAGNETIC DOUBLE RESONANCE STUDY OF N-β-BIS(β'-CHLOROETHYL)PHOSPHONYLETHYL-DL-PHENYLALANINE... 727
Mendel Friedman, Western Regional Research Laboratory, Agricultural Research Service, USDA, Berkeley, California and Walter A. Boyd, Northern Regional Research Laboratory, Agricultural Research Service, USDA, Peoria, Illinois

SUBJECT INDEX.. 745