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Preface 

This book is an introduction to hyperbolic and differential geometry that 
provides material in the early chapters that can serve as a textbook for a 
standard upper division course on hyperbolic geometry. For that material, 
the students need to be familiar with calculus and linear algebra and willing 
to accept one advanced theorem from analysis without proof. The book 
goes well beyond the standard course in later chapters, and there is enough 
material for an honors course, or for supplementary reading. Indeed, parts 
of the book have been used for both kinds of courses. 

Even some of what is in the early chapters would surely not be nec
essary for a standard course. For example, detailed proofs are given of the 
Jordan Curve Theorem for Polygons and of the decomposability of poly
gons into triangles, These proofs are included for the sake of completeness, 
but the results themselves are so believable that most students should skip 
the proofs on a first reading. 

The axioms used are modern in character and more "user friendly" 
than the traditional ones. The familiar real number system is used as an in
gredient rather than appearing as a result of the axioms. However, it should 
not be thought that the geometric treatment is in terms of models: this is 
an axiomatic approach that is just more convenient than the traditional 
ones. 

The book is appropriate as part of a special curriculum in undergradu
ate mathematics for exceptional students, designed to prepare them in three 
years for graduate-level mathematics. Our experience indicates that such 
students are able to learn mathematics more rapidly and in more depth 
than average undergraduate mathematics majors. 

A principle that has guided the development is that of mathematics in 
parallel. Students can better see the interconnections if they hear about dif
ferent subjects more-or-less simultaneously. For example, differential equa
tions ought to be introduced right along with calculus; that makes calculus 
more interesting and more relevant. As another example, the beginnings 
of group theory should be included with linear algebra, because the per
mutation and rotation groups are already present, in effect, and it takes 
only a little further explanation (which the good students like) to lay the 
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foundations of group theory. As a third example, some complex analysis is 
useful in calculus (for example power series in a complex variable); even 
Newton and Leibnitz used complex quantities (with trepidation). 

The import of that idea for the present book is in the following: 
(1) We have felt free to use methods of analysis, especially calculus and 

differential equations. In particular, we have used methods from differential 
geometry and have supplied two chapters on the relevant parts of that 
subject. 

(2) We have assumed a knowledge of complex numbers and the complex 
plane, also of matrices and groups, up through homomorphism and normal 
subgroups. 

(3) We have included a brief discussion of the connection with the 
Lorentz transformations of special relativity. 

(4) We have taken the attitude that although students ought to know 
about the synthetic methods of geometric proof (they ought to have learned 
about it in high school geometry), and although they ought to know that 
there were gaps in Euclid which were bridged in the late 19th century, 
especially by Hilbert, and although they ought to know what a proof is 
and how to construct one, in fact the bright students don't need a whole 
semester of synthetic proving to achieve that. We have therefore adopted 
a set of axioms considerably less primitive than the axioms of Euclid or 
Hilbert. We feel in particular that in modern mathematics it is not necessary 
to derive the properties of the real number system from the axioms of 
geometry. (We have discussed that system independently in an appendix.) 
The purpose of our axioms is to tell the students what hyperbolic geometry 
is in terms that are familiar to them. However, the concepts that the axioms 
deal with should be intuitively geometrical. Geometry is not just an exercise 
in abstract logic, but the concepts deal with things that one can visualize 
to some extent. 

(5) We have attempted to be more forthright about the role of mod
els of the hyperbolic plane than some books are. Models were introduced 
originally for the purely logical purpose of proving that the axioms are self
consistent (assuming that the Euclidean axioms are self-consistent). One 
defines "points", "lines", "lengths" and "angles" in terms of certain (of
ten rather strange looking) things in Euclidean geometry, and proves that 
the hyperbolic axioms are formally satisfied by the things in quotation 
marks. However, until one has proved that the axiom system is categorical, 
one cannot exclude the possibility that a given model may have additional 
properties that do not follow from the axioms (they merely don't contra
dict the axioms), while another model may have properties that contradict 
those of the first model, just as different groups have different properties 
even though every group satisfies all the axioms of group theory. 

It is therefore not permitted to derive general theorems or formulas 
from a particular model rather than from the axioms (and the good students 
wouldn't let us get away with it, because they insist on understanding the 
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logical connections in the subject). Our procedure is to derive the formulas 
of the hyperbolic plane from the axioms, without use of a model. To do that, 
we have first to establish the locally Euclidean nature of the hyperbolic 
plane: certain Euclidean laws are approximately satisfied by small figures, 
with a relative error that tends to zero as the size of the figures tends to 
zero. It seems to us that some books fail to make clear that the property of 
hyperbolic geometry follows from the hyperbolic axioms, not just from an 
accidental property of some model. 

(6) After the formulas have been derived, we discuss models, and we 
prove that the axioms are categorical, Le., that all models are isomorphic; 
the proof uses the formulas, so that categoricalness could not have been 
established (at least by this method) until the formulas are available. After 
categoricalness has been established, we can then derive further general 
results by use of any model. 

(7) Since some of the very bright students have heard of G6del's in
completeness theorem, we feel obliged to make some very brief remarks on 
the apparent conflict between that theorem and categoricalness, which says 
that the axioms of hyperbolic geometry are in a sense complete, for the 
purpose of describing the geometry. 

(8) We have corrected a prevalent misunderstanding about astronom
ical parallax. 

(9) We have tried to give an overview, not an encyclopedic sort of trea
tise. For example, most of the book deals with the two-dimensional cases, 
Le., with the hyperbolic plane and the differential geometry of surfaces. 
Our discussion of the cases of more dimensions in Chapter 9 is admittedly 
quite sketchy, for we believe that most of the important concepts are found 
in the two-dimensional cases; once these are understood, the generalization 
contains no new difficulties. 

The authors are grateful to our colleague Bill Reinhardt for much pa
tience in discussing the relationship of G6del's Incompleteness Theorem to 
the fact that the hyperbolic plane is unique up to isomorphism. Likewise, 
we thank our colleague Walter Taylor and his class in the fall term of 1993 
for many suggestions for improving the ideas or the exposition. Elizabeth 
Stimmel was stellar in her performance turning the original typescript into 
'lEX and her patience through numerous revisions. It is impossible to thank 
her enough. Finally, we thank Bruce Ramsay for invaluable assistance; he 
developed the software for drawing the figures and used it to produce them. 
He also gave crucial help in getting the figures into appropriate positions in 
the text in spite of the fiendish side effects of certain necessary 'lEX macros. 
He contributed much more than anyone can expect from a friend or a son. 

Robert Richtmyer 
Arlan Ramsay 
Boulder, Colorado 
August, 1994 
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