LOW-NOISE WIDE-BAND AMPLIFIERS IN BIPOLAR AND CMOS TECHNOLOGIES
A VLSI Architecture for Concurrent Data Structures, W.J. Dally, ISBN: 0-89838-235-1
Yield Simulation for Integrated Circuits, D.M.H. Walker, ISBN: 0-89838-244-0
A Systolic Array Optimizing Compiler, M.S. Lam, ISBN: 0-89838-301-3
VLSI for Artificial Intelligence, J.G. Delgado-Frias, W.R. Moore (Editors), ISBN: 0-7923-9006-7
LOW-NOISE WIDE-BAND AMPLIFIERS IN BIPOLAR AND CMOS TECHNOLOGIES

by

Zhong Yuan Chang
Catholic University Leuven

Willy M. C. Sansen
Catholic University Leuven

SPRINGER SCIENCE+BUSINESS MEDIA, LLC
CONTENTS

PREFACE ix

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 NOISE IN INTEGRATED CIRCUITS -MECHANISMS AND MODELS 7

2.1 Introduction ... 7
2.2 Noise Sources in MOS Transistors 8
 2.2.1 Channel Thermal Noise Mechanism 9
 2.2.2 1/f Noise in MOS Transistors 12
 2.2.3 Additional Noise Sources 21
 2.2.4 Equivalent Input Noise Generators 25
2.3 Noise in Bipolar Junction Transistors 27
 2.3.1 Shot Noise in BJT transistors 28
 2.3.2 1/f Noise in BJT Transistors 31
 2.3.3 Equivalent Input Noise Generators 33
2.4 Low-Noise Amplifiers with Resistive Sources 35
 2.4.1 Low-Noise Transimpedance Amplifiers 36
 2.4.2 Low-Noise Voltage Amplifiers 39
2.5 Measurement of 1/f Noise in MOSFETs and BJTs 41
 2.5.1 Measurement System ... 41
 2.5.2 Measurement of 1/f Noise in MOSFETs 43
 2.5.3 Measurement of 1/f Noise in BJTs 49
2.6 Conclusions ... 49

CHAPTER 3 LOW-NOISE WIDE-BAND AMPLIFIERS WITH INDUCTIVE SOURCES: LAMPS 55

3.1 Introduction ... 55
3.2 Low-Noise LAMPS in Bipolar Technology 57
3.2.1 Choice of Feedback Configurations 57
3.2.2 Stability and Signal Transfer Conditions 59
3.2.3 Low-Noise Design in BJT Technology 69
3.2.4 Experimental Results 74
3.3 Low-Noise LAMPS in CMOS Technology 76
 3.3.1 CMOS vs Bipolar Process 76
 3.3.2 Low-Noise Design in CMOS Technology 79
 3.3.3 Design of CMOS LAMPS 84
 3.3.4 CMOS Non-Inverting Output Stages 87
3.4 Low-Noise LAMPS in BiCMOS Technology 91
 3.4.1 New Core Amplifier Topology 91
 3.4.2 Noise and Offset of Symmetrical Output Stages 95
3.5 Conclusions .. 97

CHAPTER 4 LOW-NOISE WIDE-BAND AMPLIFIERS WITH
CAPACITIVE SOURCES: CAMPS 103
4.1 Introduction .. 103
4.2 Low-Noise CAMPs in CMOS Technology 105
 4.2.1 Feedback Topology and Transfer Function 107
 4.2.2 Low-Noise Design of Input Stage 109
 4.2.3 Low-Distortion Output Stage 112
 4.2.4 Compensation of Three Stage Amplifiers 116
 4.2.5 DC Bias Considerations 120
 4.2.6 Experimental Results 122
4.3 Low-Noise CAMPs in BiCMOS Technology 124
 4.3.1 Bipolar vs MOS Input Stage 124
 4.3.2 Two Stage Inverting Amplifier Structures 127
 4.3.3 Output Driving Capability 132
 4.3.4 Wide-Band Amplifiers for SW receivers 139
 4.3.5 Experimental Results 145
4.4 Conclusions .. 147
CHAPTER 5 LOW-NOISE HIGH-SPEED CMOS DETECTOR
READOUT ELECTRONICS .. 153

5.1 Introduction ... 153
5.2 Maximal Resolution in CMOS Technology 155
 5.2.1 Calculation of Resolution ENCs 157
 5.2.2 Input Noise Matching Conditions 163
 5.2.3 Optimal Pulse Shapers Characteristics 169
5.3 Design of Analog CMOS Readout Electronics 172
 5.3.1 Design Criteria of CSAs 173
 5.3.2 Design Criteria of S-G Shapers 181
 5.3.3 Class-AB Buffers for MCA 188
5.4 Experimental Results ... 191
5.5 Conclusions ... 194
APPENDIX A Measurement of ENC 196

CHAPTER 6 GENERAL CONCLUSIONS 201

INDEX ... 209
Preface

Analog circuit design has grown in importance because so many circuits cannot be realized with digital techniques. Examples are receiver front-ends, particle detector circuits, etc. Actually, all circuits which require high precision, high speed and low power consumption need analog solutions. High precision also needs low noise. Much has been written already on low noise design and optimization for low noise. Very little is available however if the source is not resistive but capacitive or inductive as is the case with antennas or semiconductor detectors. This book provides design techniques for these types of optimization.

This book is thus intended firstly for engineers on senior or graduate level who have already designed their first operational amplifiers and want to go further. It is especially for engineers who do not want just a circuit but the best circuit. Design techniques are given that lead to the best performance within a certain technology. Moreover, this is done for all important technologies such as bipolar, CMOS and BiCMOS.

Secondly, this book is intended for engineers who want to understand what they are doing. The design techniques are intended to provide insight. In this way, the design techniques can easily be extended to other circuits as well. Also, the design techniques form a first step towards design automation.

Thirdly, this book is intended for analog design engineers who want to become familiar with both bipolar and CMOS technologies and who want to learn more about which transistor to choose in BiCMOS.

Fourthly, this book is written for analog designers by analog designers. It is not theoretical nor empirical nor descriptive. It is about analog design with all its benefits for the ever developing creative mind of analog circuit designers.

Leuven, Belgium

Z.Y. Chang
W. Sansen
LOW-NOISE WIDE-BAND AMPLIFIERS IN BIPOLAR AND CMOS TECHNOLOGIES