Advances in Cryogenic Engineering

Volume 11

Proceedings of the 1965 Cryogenic Engineering Conference
Rice University
Houston, Texas
August 23-25, 1965

K. D. TIMMERHAUS, Editor
Engineering Research Center
University of Colorado
Boulder, Colorado

Springer Science+Business Media, LLC
1966
Library of Congress Catalog Card Number: 57-35598

DOI 10.1007/978-1-4757-0522-5
CONTENTS

Foreword xi
1964 Award-Winning Paper xi
Acknowledgment xii
1965 Cryogenic Engineering Conference Committee xii
The Samuel C. Collins Award xiii

Invited Papers

A-1 The Impact of the Space Age on Cryogenics, A. O. Tischler, NASA Office of Advanced Research and Technology 1
A-2 Helium Refrigerator and Liquefier, S. C. Collins, Massachusetts Institute of Technology and Arthur D. Little, Inc. 11

Insulation

B-1 Shingle Multilayer Insulation for Space Vehicles Using Cryogenic Fluids, R. T. Parmley, D. R. Elgin, and R. M. Coston, Lockheed Missiles and Space Company 16
B-2 Effects of Compressive Loads on the Heat Flux Through Multilayer Insulations, I. A. Black and P. E. Glaser, Arthur D. Little, Inc. 26
B-3 Experimental Evaluation of Some Selected Lightweight Superinsulation for Space Vehicles, R. C. Getty, J. P. Clay, E. J. Kremzier, and K. E. Leonhard, General Dynamics/Convair 35
B-4 Effective Purging of High-Performance Multilayer Insulation Systems, T. C. Nast, Lockheed Missiles and Space Company 49
B-5 Experimental Evaluation of the Equations and Parameters Governing Flow Through Multilayer Insulations During Evacuation, R. M. Coston, Lockheed Missiles and Space Company 56
B-6 Effect of Convection in Helium-Charged, Partial-Foam Insulations for Liquid Hydrogen Propellant Tanks, B. N. Taylor and F. E. Mack, North American Aviation, Inc. 65
B-7 Some Heat Transfer Considerations in Non-Evacuated Cryogenic Powder Insulation, C. L. Johnson, Lockheed-California Company, and D. J. Hollwegler, McDonnell Aircraft Corporation 77
B-8 Development of the Saturn S-IV and S-IVB Liquid Hydrogen Tank Internal Insulation, D. L. Dearing, Douglas Aircraft, Inc. 89
B-9 Considerations in the Design, Selection, and Use of Vacuum-Insulated Pipe, G. C. Haettinger, Union Carbide Corporation, Linde Division 98

Refrigeration

C-1 Design of a Closed-Cycle Helium Temperature Refrigerator, C. E. Witter, Union Carbide Corporation, Linde Division 107
C-3 A Cold-Moderator Refrigerator Incorporating a High-Speed Turbine Expander, R. O. VOTH, M. T. NORTON, and W. A. WILSON, CD-NBS Institute for Materials Research 126
C-4 Refrigeration Requirements for a Superconducting Continuous-Sheet Computer Memory, D. L. ATHERTON and H. J. SMITH, Ferranti Electronics, Division of Ferranti-Packard Electric ... 139
C-5 The Gifford–McMahon Cycle, W. E. GIFFORD, Syracuse University 152
C-6 The Performance of Refrigeration Cycles below 100°F, D. G. WILSON and B. J. d'ARBELOFF, Northern Research and Engineering Corporation 160
C-7 Surface Heat Pumping, W. E. GIFFORD and R. C. LONGSWORTH, Syracuse University ... 171
C-8 Local High-Intensity Cryogenic Cooling, J. H. JONES and R. G. SHOULBERG, General Electric Company .. 180

Space Technology

D-1 Simplifying Large Cryogenic Research Tankage Temperature Measurements, R. M. KOCHEK, W. G. WILSON, and D. B. SCHNEIDER, Lockheed Missiles and Space Company ... 189
D-2 Cooling with Solid Cryogens—A Review, A. A. FOWLE, Arthur D. Little, Inc. 198
D-5 A Superconducting Liquid-Level Sensor for Slush Hydrogen Use, B. L. KNIGHT, K. D. TIMMERHAUS, and T. M. FLYNN, CD-NBS Institute for Materials Research ... 218
D-9 Saturn Vehicle Cryogenic Programs, R. D. WALKER and B. J. HERMAN, NASA George C. Marshall Space Flight Center ... 251

Cryogenic Properties

E-1 Heat of Fusion and Density of Solid Parahydrogen at Pressures to about 400 Atmospheres, H. R. LANDER, Air Force Aero Propulsion Laboratory, and R. F. DWYER and G. A. COOK, Union Carbide Corporation, Linde Division ... 261
Contents

E-3 Hazard Studies with Hydrogen and Oxygen in the Liquid and Solid Phases, S. Kaye, General Dynamics/Convair

E-4 Investigation of Potential Low Temperature Insulators, J. Hertz, General Dynamics/Convair

E-5 Physical Properties of Filament Wound Glass Epoxy Structures as Applied to Possible Use in Liquid Hydrogen Bubble Chambers, H. Brechta and W. Haldeemann, Stanford Linear Accelerator Center

E-7 Absorptance of Thermal Radiation by Cryodeposit Layers, D. G. McConnell, NASA Lewis Research Center

Phase Equilibria and Thermodynamics

F-2 Liquid–Vapor Phase Equilibria of the Neon–Normal Hydrogen System, C. K. Heck and P. L. Barrick, University of Colorado

F-3 Liquid–Vapor Equilibrium in the System Neon–Oxygen from 63° to 152°K and at Pressures to 5000 psi, W. B. Streett and C. H. Jones, United States Military Academy

F-5 The Vapor Pressure of Dry Air at Low Temperatures, G. Walker, W. J. Christian, and R. A. Budenholzer, IIT Research Institute

F-6 The P-V-T Behavior of Nitrogen, Argon, and Their Mixtures, R. W. Crain, Jr. and R. E. Sonntag, University of Michigan

F-7 Calculation of Enthalpy Data from a Modified Redlich–Kwong Equation of State, G. M. Wilson, Air Products and Chemicals, Inc.

Mechanical Properties

G-1 A Cryostat for Izod Impact Testing, D. T. Eash, University of California, Los Alamos Scientific Laboratory

G-2 Mechanical Properties of Electroformed Nickel at Room and Cryogenic Temperatures, J. L. Christian, W. G. Sch Heck, and J. D. Cox, General Dynamics/Convair

G-4 The Development of Titanium and Inconel Cryogenic Pressure Vessels, R. J. Balthazar and H. E. Sutton, Beech Aircraft Corporation

G-5 Tensile and Creep Properties of a High Nitrogen Content 18/10 (AISI 304-L) Stainless Steel at Cryogenic Temperatures, R. Voyer, Canadian Liquid Air, Ltd., and L. Weil, Centre de Recherches sur les Trés Bases Températures

G-6 Cryogenic Design Data and Criteria of Aerospace Materials Subjected to Uniaxial and Biaxial Stress States, S. W. McClaren and C. R. Foreman, LTV Aerospace Corporation

G-7 Cryogenic Properties of High-Strength Glass-Reinforced Plastics, R. D. Keys, T. F. Kiefer, and F. R. Schwartzberg, Martin Company
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G–8 Measuring the Combined Effects of Nuclear Radiation and Cryotemperatures on the Tensile and Shear Properties of</td>
<td>478</td>
</tr>
<tr>
<td>Materials, E. T. Smith, General Dynamics/Fort Worth.</td>
<td></td>
</tr>
<tr>
<td>G–9 Effect of Nuclear Radiation and Liquid Hydrogen on Mechanical Properties of Three Phenolic Materials, W.</td>
<td>486</td>
</tr>
<tr>
<td>Weleff, Aerojet-General Corporation.</td>
<td></td>
</tr>
<tr>
<td>Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>H–1 Comparative Study of Forced Convection Boiling Heat Transfer Correlations for Cryogenic Fluids, P. J.</td>
<td>492</td>
</tr>
<tr>
<td>Giarratano and R. V. Smith, CD-NBS Institute for Materials Research.</td>
<td></td>
</tr>
<tr>
<td>H–2 Boiling Heat Transfer from Cylinders in a Saturated Liquid Helium II Bath, R. M. Holdredge and P. W. McFadden,</td>
<td>507</td>
</tr>
<tr>
<td>Purdue University.</td>
<td></td>
</tr>
<tr>
<td>H–3 Nucleate and Film Boiling Heat Transfer to Nitrogen and Methane at Elevated Pressures and Large Temperature</td>
<td>516</td>
</tr>
<tr>
<td>Differences, E. L. Park, Jr., C. P. Colver, and C. M. Slipepcevich, University of Oklahoma.</td>
<td></td>
</tr>
<tr>
<td>H–4 Heat Transfer by the Circulation of Supercritical Helium, H. H. Kolm, M. J. Leupold, and R. D. Hay, National</td>
<td>530</td>
</tr>
<tr>
<td>Magnet Laboratory, MIT.</td>
<td></td>
</tr>
<tr>
<td>H–5Cooldown of Insulated Metal Tubes to Cryogenic Temperatures, J. P. Maddox and T. H. K. Frederking, University</td>
<td>536</td>
</tr>
<tr>
<td>of California.</td>
<td></td>
</tr>
<tr>
<td>H–6 A Method of Increasing Heat Transfer to Space Chamber Cryopanels, L. D. Allen, NASA Manned Spacecraft Center</td>
<td>547</td>
</tr>
<tr>
<td>H–7 Chiloldown and Storage Losses of Large Liquid Hydrogen Storage Dewars, D. H. Liebenberg, R. W. Stokes, and</td>
<td>554</td>
</tr>
<tr>
<td>F. J. Eadesky, University of California, Los Alamos Scientific Laboratory.</td>
<td></td>
</tr>
<tr>
<td>H–8 Further Experimental Study of H$_2$O–LH$_2$ Heat Exchangers, J. R. Bartlit and K. D. Williamson, Jr.,</td>
<td>561</td>
</tr>
<tr>
<td>University of California, Los Alamos Scientific Laboratory.</td>
<td></td>
</tr>
<tr>
<td>H–9 Heat Transfer Domains for Fluids in a Variable Gravity Field with Some Applications to Storage of Cryogens in</td>
<td>568</td>
</tr>
<tr>
<td>H–10 A Study of Bubble Motion in Liquid Nitrogen, C. G. Fritz, NASA George C. Marshall Space Flight Center.</td>
<td>584</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>J–1 Quartz-to-Metal and Large Diameter Metal-to-Metal Recycling Cryogenic High-Vacuum Seals, J. M. Brooks, T. A.</td>
<td>593</td>
</tr>
<tr>
<td>Romanowski, and J. Terandy, Argonne National Laboratory.</td>
<td></td>
</tr>
<tr>
<td>University of California, Los Alamos Scientific Laboratory.</td>
<td></td>
</tr>
<tr>
<td>J–4 Gas Bath Cryostat for Wide-Range Temperature Control, A. L. Blancett and F. B. Canfield, University of</td>
<td>612</td>
</tr>
<tr>
<td>Oklahoma.</td>
<td></td>
</tr>
<tr>
<td>J–5 Design of Para-Orthohydrogen Catalytic Reactors, A. H. Singleton and A. Lapin, Air Products and Chemicals, Inc.</td>
<td>617</td>
</tr>
<tr>
<td>Reiter, Air Reduction Company.</td>
<td></td>
</tr>
</tbody>
</table>
Superconductivity and Magnets

K–1 High-Field Liquid-Neon-Cooled Electromagnets, G. V. Brown and W. D. Coles, NASA Lewis Research Center .. 638
K–2 A Superconducting Magnetic Bottle, J. C. Laurence and W. D. Coles, NASA Lewis Research Center .. 643
K–3 Critical State of Superconducting Solenoids, M. S. Lubell, Westinghouse Research Laboratory 652
K–4 The Performance of Large Superconducting Coils, C. Laverick and G. M. Lobell, Argonne National Laboratory 659
K–5 Cryogenics and Aluminum in Electrical Manufacturing, P. Burnier, Alstom ... 668
K–6 Dynamic Protection of Superconductive Coils, S. H. Minnich, General Electric Company .. 675
K–7 Some Remarks on Cryogenic Cables, P. A. Klaudy, Technical University of Graz .. 684

Indexes

Author Index .. 699
Cumulative Subject Index .. 701