CONTEMPORARY TOPICS IN
MOLECULAR IMMUNOLOGY
VOLUME 4
CONTEMPORARY TOPICS IN MOLECULAR IMMUNOLOGY

General Editor:
F. P. Inman
Department of Microbiology
The University of Georgia
Athens, Georgia

Editorial Board:
G. L. Ada
Department of Microbiology
The John Curtin School of Medical Research
Australian National University
Canberra City, Australia

H. N. Eisen
Center for Cancer Research
Department of Biology
Massachusetts Institute of Technology
Cambridge, Massachusetts

W. J. Mandy
Department of Microbiology
University of Texas
Austin, Texas

R. R. Porter
Department of Biochemistry
University of Oxford
Oxford, England

R. A. Reisfeld
Department of Experimental Pathology
Scripps Clinic and Research Foundation
La Jolla, California

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
CONTEMPORARY TOPICS IN
MOLECULAR IMMUNOLOGY

VOLUME 4

EDITED BY
F. P. INMAN
Department of Microbiology
The University of Georgia
Athens, Georgia

and

W. J. MANDY
Department of Microbiology
University of Texas
Austin, Texas

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

Contributors

David R. Davies Laboratory of Molecular Biology
 National Institute of Arthritis, Metabolism and Digestive Diseases
 National Institutes of Health
 Bethesda, Maryland

Raymond A. Daynes Department of Molecular Biology and Biochemistry
 University of California
 Irvine, California

Blas Frangione Irvington House Institute
 Rheumatic Diseases Study Group
 Department of Medicine
 New York University Medical Center
 New York, New York

Edward C. Franklin Irvington House Institute
 Rheumatic Diseases Study Group
 Department of Medicine
 New York University Medical Center
 New York, New York

Arnold Froese MRC Group for Allergy Research
 Department of Immunology
 Faculty of Medicine
 Winnipeg, Manitoba, Canada

Gale A. Granger Department of Molecular Biology and Biochemistry
 University of California
 Irvine, California

W. Carey Hanly Department of Preventive Medicine and Community Health
 University of Illinois at the Medical Center
 Chicago, Illinois

Edward W. B. Jeffes, III Department of Molecular Biology and Biochemistry
 University of California
 Irvine, California

Katherine L. Knight Department of Microbiology
 University of Illinois at the Medical Center
 Chicago, Illinois

Eduardo A. Padlan Laboratory of Molecular Biology
 National Institutes of Arthritis, Metabolism and Digestive Diseases
 National Institutes of Health
 Bethesda, Maryland

v
R. R. Porter
MRC Immunochemistry Unit
Biochemistry Department
Oxford University
Oxford, England

M. D. Poulik
Division of Immunochemistry
William Beaumont Hospital Research Institute
Royal Oak, Michigan
and
Department of Immunology and Microbiology
Wayne State University School of Medicine
Detroit, Michigan

Anne-Marie Prieur
Department of Molecular Biology and Biochemistry
University of California
Irvine, California

K. B. M. Reid
MRC Immunochemistry Unit
Biochemistry Department
Oxford University
Oxford, England

R. A. Reisfeld
Department of Molecular Immunology
Scripps Clinic and Research Foundation
La Jolla, California

Paul E. Runge
Department of Molecular Biology and Biochemistry
University of California
Irvine, California

David M. Segal
Immunology Branch
National Cancer Institute
Bethesda, Maryland

Alec H. Sehon
MRC Group for Allergy Research
Department of Immunology
Faculty of Medicine
Winnipeg, Manitoba, Canada
There are many unanswered questions regarding the molecular nature of antibodies, components of complement, and other substances which participate in the immune response. The list of substances which need to be analyzed chemically is increasing. Plasma cell products, of course, have long been of great interest because the most prevalent ones are immunoglobulins. Other cell types, however, are the source of the broad spectrum of additional substances which classically fall into the sanctum of the molecular immunologist. It is these substances, and especially those more recently discovered, which are responsible for the broadening investigative interests of immunologists.

In this volume we have provided you with descriptions of research being done with immunoglobulins and with complement. Additionally, we have included two reports that deal with molecules which are among the more recent acquisitions of the molecular immunologist.

The components of complement are known to react in a cascading manner which results in the lysis of cellular antigens. The first step in the classical pathway requires the activation of C1 by the antibody–antigen aggregates. This volume of *Contemporary Topics in Molecular Immunology* begins with the report of Reid and Porter which describes their investigation of the mechanism of activation of C1. Their descriptions of C1q and of the reaction of C1 with immunoglobulins are especially intriguing. It is clearly apparent from their report that activation of the components of complement is a complex phenomenon.

While it has long been known that antibody–antigen reactions are very fast, it was only within recent years that special techniques became available for making accurate and meaningful kinetic measurements. Froese and Sehon utilized the techniques for investigating the antibody’s combining site and its epitope as they combined. Kinetic studies provided additional information about the mechanism of the reaction, and about the structure of the combining site.

Rabbit immunoglobulin allotypes are an exciting and controversial subject in immunology. This will become evident to readers of the contribution of Knight and Hanly who describe in considerable detail the genetic control of rabbit α chains. The treatise begins with a complete but concise description of
our up-to-date understanding of immunoglobulin allotypes, which includes nomenclature, genetic notations, etc. Then the authors deal with the complexities of the variable and constant region allotypes. Finally, they bring into proper perspective the inter-relationships of all the variable and constant region heavy chain genes.

Franklin and Frangione have reviewed the structurally altered proteins associated with plasma cell and lymphocyte neoplasms in humans and mice. These proteins, besides being interesting from the structural point of view, are being used to obtain genetic information that cannot be derived from studies of intact molecules. The authors have described chemically the γ, α, and μ heavy chain disease proteins and myeloma proteins which have altered heavy and light chains. They have concluded by drawing attention to the nonrandomness of mutations. Within the framework of present knowledge possible mechanisms for synthesis of the structurally altered immunoglobulins are discussed.

The sequences of heavy and light chains and their relationships to the three-dimensional structure of IgG are described by Davies, Padlan, and Segal. The hypervariable regions of the V domains are brought together to form the antigen-binding sites of two Fab fragments with binding activity. The remarkable crystallographic studies of these investigators have made it clear that insertions, deletions, and simple substitutions in the hypervariable regions will produce profound changes in the specificity of the site.

Poulik and Reisfeld have prepared a comprehensive review of the literature concerned with β2-microglobulin. They have described the physical-chemical properties of the protein and have concluded that it is probably a free circulating domain functionally analogous to CH₃. Further, all human nucleated cells appear to be able to produce β2-microglobulins and contain the protein on their membranes. The β2-microglobulins are a part of native HL-A antigens, and the mode of their association is discussed in detail. The authors also have considered the possible biological and immunological functions of the protein.

The nature and activities of lymphokines have generated considerable interest recently. The book concludes with the discussion by Granger, Daynes, Runge, Prieur, and Jeffes of the lymphokines and some factors which may be instrumental in governing their secretion. The authors describe several models for direct and indirect cytodestruction in in vitro systems by activated lymphotoxin or lymphotoxin-like molecules on the surface of the target cell, and it is this substance which ultimately is responsible for cytolysis. Recent data which support this premise are discussed.

We wish to thank the writers for providing us with such exciting manuscripts, and we cannot help but feel confident that you, the reader, will be enlightened as you read this volume.

F. P. Inman
W. J. Mandy
Contents

The Structure and Mechanism of Activation of the First Component of Complement

K. B. M. Reid and R. R. Porter

I. Introduction ... 1
II. Isolation and Properties of C1, C1q, C1r, and C1s 2
 A. C1 ... 2
 B. C1q ... 4
 C. Structure of C1q Noncovalently Linked Subunits 6
 D. Covalent Structure of the Peptide Chains 8
 E. Electron Microscope Studies and Suggested Structure of C1q 8
 F. C1r ... 11
 G. C1s ... 12
III. Activation of C1 .. 13
 A. Nonspecific Activation ... 13
 B. Reaction of C1 with Immunoglobulins 14
 C. Position of C1 Binding Site in Immunoglobulin 15
 D. Effect of Activation on the C1 Molecule 18
IV. Conclusion ... 19
V. References ... 20

Kinetics of Antibody—Hapten Reactions

Arnold Froese and Alec H. Sehon

I. Introduction .. 23
II. Methods Used to Detect Hapten Binding 25
III. Kinetic Methods .. 33
 A. The Stopped-Flow Technique ... 33
 B. The Temperature—Jump Relaxation Technique 35
IV. Results of Kinetic Studies ... 36
 A. Kinetic Mapping of the Antibody Combining Site 41
 B. Are Antibody—Hapten Reactions Diffusion Controlled? 42
 C. Kinetics and Antibody Heterogeneity 43
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. The pH Dependence of Antibody–Hapten Reactions</td>
<td>45</td>
</tr>
<tr>
<td>E. Conformational Changes</td>
<td>47</td>
</tr>
<tr>
<td>F. Reactions Involving Antibody Fragments</td>
<td>48</td>
</tr>
<tr>
<td>V. Concluding Remarks</td>
<td>51</td>
</tr>
<tr>
<td>VI. References</td>
<td>53</td>
</tr>
</tbody>
</table>

Genetic Control of α Chains of Rabbit IgA: Allotypic Specificities on the Variable and the Constant Regions

Katherine L. Knight and W. Carey Hanly

I. Introduction 55
II. Variable Region Allotypes of Heavy Chains 59
 A. Identification and Genetic Control of a, x, and y Allotypes 59
 B. Complex Nature of the $V_H\alpha$ Allotypic Specificities 61
 C. The $V_H\alpha$ Genes–Allelic or Pseudoallelic? 62
 D. Occurrence of Rabbit V_H Allotypic Specificities on Ig Molecules of Other Species 65
III. Constant Region Allotypes of α Chains 66
 A. Identification and Genetic Control of f and g Allotypes 66
 B. Localization of f and g Allotypic Specificities to the α Chains 68
 C. Complex Nature of the g Allotypic Specificities 70
 D. Allelic and Subclass Exclusion: Molecular and Cellular Levels 72
IV. Allogroups 74
 A. Linkage of Ig Heavy Chain Genes 74
 B. Control of Quantitative Expression of α Chain Allotypes 76
V. Recombinant slgA Molecules and Cells:
 Association Between $V_H\alpha$ and C_α Genes in Trans Position 78
VI. Proteolytic Digestion of IgA 82
VII. Summary 83
VIII. References 86

Structural Variants of Human and Murine Immunoglobulins

Edward C. Franklin and Blas Frangione

I. Introduction 89
II. History and Description 94
III. Specific Types of Structurally Altered Human and Murine Proteins 95
 A. Heavy Chain Variants 95
 B. Light Chain Variants 116
 C. Nonsecretors 120
Contents

| IV. Discussion | 121 |
| V. References | 124 |

Immunoglobulin Structures at High Resolution

David R. Davies, Eduardo A. Padlan, and David M. Segal

I. Introduction	127
II. X-Ray Diffraction	129
III. Overall Three-Dimensional Structure	130
IV. High-Resolution Structure of Immunoglobulin Domains	131
A. Constant Domains	135
B. Variable Domains	140
C. Hypervariable and Framework Residues	143
V. Quaternary Structure	145
A. The $V_L:V_H$ Interface	145
B. The $C_L:C_H$ Interface	145
C. The Overall Fab Structure	147
D. The Fc Structure	148
E. The Overall Molecule	149
F. The Antigen-Binding Site	149
VI. Conclusion	152
VII. References	153

β_2-Microglobulins

M. D. Poulak and R. A. Reisfeld

I. Introduction	157
II. Physical Properties and Structure	158
A. Purification and Isolation	158
B. Identification	161
C. Physicochemical Characteristics	165
D. Structural Studies	167
E. Immunologic Properties	167
III. Physiological Properties	169
A. Excretion and Catabolism	169
B. Levels in Health and Disease	172
C. Synthesis	174
IV. β_2-Microglobulin and Cell Membranes	175
A. Expression of β_2-Microglobulin at the Cell Surface	175
B. The Association Between HL-A Antigens and β_2-Microglobulin	182
V. Immunological Function	196
Lymphocyte Effector Molecules and Cell-Mediated Immune Reactions
Gale A. Granger, Raymond A. Daynes, Paul E. Runge, Anne-Marie Prieur, and Edward W. B. Jeffes, III

I. In Vivo and in Vitro Manifestations of Cell-Mediated Immune (CMI) Reactions .. 205
II. The Spectrum of Activities of “Lymphokines (LK)” Present in the Supernatant from Activated Lymphoid Cells 206
III. Parameters to be Considered When Studying LK 208
IV. Physical–Chemical Nature of LK 212
V. In Vitro Model Systems for Direct and Indirect Lymphocyte-Mediated Cytodestruction ... 213
VI. The Role of Lymphotoxin (LT) in Lymphocyte-Mediated Cytotoxic Reactions in Vitro .. 218
 A. Mechanism of LT-Induced Target Cell Cytolysis in Vitro 219
 B. Regulation of LT Secretion by Human Lymphoid Cells in Vitro 222
 C. Studies Implicating LT as an Important Cytodestructive Molecule in Direct Lymphocyte-Mediated Killing 227
 D. Comparison of the Features of Direct and Indirect Lymphocyte-Mediated Cytotoxic Reactions in Vitro 234
VII. Theoretical Model of How Activated Lymphocytes May Use LT as a Cytodestructive Effector Molecule in Both Direct and Indirect Cytotoxic Reactions .. 234
VIII. Appendix ... 237
IX. References ... 239

Index ... 243