GASEOUS DIELECTRICS VI
GASEOUS DIELECTRICS VI

Edited by
Loucas G. Christophorou
and
Isidor Sauers

Oak Ridge National Laboratory
Oak Ridge, Tennessee

SPRINGER SCIENCE+BUSINESS MEDIA, LLC
The Sixth International Symposium on Gaseous Dielectrics was held in Knoxville, Tennessee, U.S.A., on September 23-27, 1990. The symposium continued the transdisciplinary character and comprehensive approach of the preceding five symposia.

Gaseous Dielectrics VI is a detailed record of the symposium proceedings. It covers recent advances and developments in a wide range of basic, applied and industrial areas of gaseous dielectrics. It is hoped that *Gaseous Dielectrics VI* will aid future research and development in and encourage wider industrial use of gaseous dielectrics.

The Organizing Committee of the Sixth International Symposium on Gaseous Dielectrics consisted of L. G. Christophorou (U.S.A.), F. Y. Chu (Canada), A. H. Cookson (U.S.A.), D. L. Damsky (U.S.A.), O. Farish (U.K.), I. Gallimberti (Italy), A. Garscadden (U.S.A.), E. Marode (France), T. Nitta (Japan), W. Pfeiffer (Germany), I. Sauers (U.S.A.), R. J. Van Brunt (U.S.A.), and W. Zaengl (Switzerland). The local arrangements committee consisted of members of the Health and Safety Research Division and personnel of the Conference Office of the Oak Ridge National Laboratory, and staff of the University of Tennessee (UTK). The contributions of each member of these committees, the work of the Session Chairmen, the interest of the participants, and the advice of innumerable colleagues are gratefully acknowledged. I am especially indebted to Dr. Dennis L. McCorkle, Mrs. Joan E. Carrington, and Ms. Jo Ann Cripps for their assistance during the symposium and for their help with the manuscripts.

The symposium was hosted by the Oak Ridge National Laboratory and the University of Tennessee and was sponsored by the U.S. Department of Energy, the UTK/ORNL Science Alliance, and the Aero Propulsion and Power Laboratories of the Wright Research and Development Center; it was organized in cooperation with the Institute of Electrical and Electronics Engineers, Inc., the Power Engineering Society, and the Dielectrics and Electrical Insulation Society. The continued support of the Oak Ridge National Laboratory and the financial assistance of the sponsors are acknowledged with gratitude.

L. G. Christophorou, Symposium Chairman

Oak Ridge, Tennessee
December, 1990
CONTENTS

CHAPTER 1: BASIC PHYSICS OF GASEOUS DIELECTRICS

Collisional Electron Detachment in Dielectric Gases
R. L. Champion ... 1
Discussion ... 8

A Technique for the Measurement of Electron
Attachment to Short-Lived Excited Species
L. G. Christophorou, L. A. Pinnaduwage and A. P. Bitouni 9
Discussion ... 17

Total Cross Sections for Electron Scattering and
Attachment for SF6 and Its Electrical-Discharge By-Products
J. K. Olthoff, R. J. Van Brunt, H.-X. Wan, J. H. Moore and J. A. Tossell 19
Discussion ... 26

Electron Localization Effects and Resonant
Attachment to O2 Impurities in Highly Compressed Neon Gas
A. F. Borghesani and M. Santini .. 27
Discussion ... 33

Temperature Dependence of the Dissociative
Electron Attachment to CH3Cl and C2H5Cl
P. G. Datskos, L. G. Christophorou and J. G. Carter 35

Multibody Electron Capture Processes in the Gas Phase
I. Szamrej and M. Forys .. 43

CHAPTER 2: BASIC MECHANISMS

Leader Breakdown in Compressed SF6: Recent Concepts and
Understanding
L. Niemeyer ... 49
Discussion ... 60

Electrical Breakdown in the Space Environment
E. E. Kunhardt, S. Barone, J. Bentson and S. Popovic 61
Discussion ... 71

Positive Synergism and Time-Resolved Swarm Experiments
J. M. Wetzer and C. Wen .. 73
Discussion ... 79
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Development in Air at Very High Humidity Levels</td>
<td>81</td>
</tr>
<tr>
<td>A. J. Davies, J. Dutton, M. Matallah and R. T. Waters</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>87</td>
</tr>
<tr>
<td>Negative Synergism in CF$_2$Cl$_2$-N$_2$ and CF$_2$Cl$_2$-CO$_2$ Gas Mixtures</td>
<td>89</td>
</tr>
<tr>
<td>Y. Qiu, X. Ren, Z. Y. Liu and M. C. Zhang</td>
<td></td>
</tr>
<tr>
<td>Excitation and Ionisation in the Transient State</td>
<td>95</td>
</tr>
<tr>
<td>Discharge in Pure Nitrogen</td>
<td></td>
</tr>
<tr>
<td>H. Korge, U. Kuusk, M. Laan and J. Susi</td>
<td></td>
</tr>
<tr>
<td>Discussion of Some Space-Charge Effects in the Context of Low-Temperature and High-Field Steady-State Gas Discharges</td>
<td>101</td>
</tr>
<tr>
<td>M. F. Fréchette and D. Roberge</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3: MODELING</td>
<td></td>
</tr>
<tr>
<td>Non-equilibrium Effects in the Initiation of Pseudospark Discharges</td>
<td>109</td>
</tr>
<tr>
<td>L. C. Pitchford and J.-P. Boeuf</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>120</td>
</tr>
<tr>
<td>Dissociation Processes in Plasma Chemistry and Gaseous Dielectrics</td>
<td>121</td>
</tr>
<tr>
<td>L. E. Kline</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>128</td>
</tr>
<tr>
<td>The Calculation of Leader Propagation in Point/Plane Gaps Under Very Fast Transient Stress</td>
<td>129</td>
</tr>
<tr>
<td>H. Hiesinger</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>135</td>
</tr>
<tr>
<td>Fractal Description of Electrical Discharges</td>
<td>137</td>
</tr>
<tr>
<td>L. Egíziano, N. Femia, G. Lupó and V. Tucci</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>144</td>
</tr>
<tr>
<td>A Two-Dimensional Simulation of A Hollow-Cathode Discharge</td>
<td>145</td>
</tr>
<tr>
<td>W. Niessen and A. J. Davies</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 4: GAS BREAKDOWN AND ITS RELATION TO VACUUM AND LIQUID BREAKDOWN</td>
<td></td>
</tr>
<tr>
<td>Similarities Between High Electric Field Electron Emission and Consequent Breakdown Processes in Compressed Gases and Vacuo</td>
<td>151</td>
</tr>
<tr>
<td>A.E.D. Heylen</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>158</td>
</tr>
<tr>
<td>Liquid Breakdown and Its Relation to Gas Breakdown</td>
<td>159</td>
</tr>
<tr>
<td>R. Tobazén</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>169</td>
</tr>
<tr>
<td>Corona Discharges in Liquid and Gaseous Hydrocarbons: The Influence of Pressure</td>
<td>171</td>
</tr>
<tr>
<td>M. Haidara, N. Bonifaci and A. Denat</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>177</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Starting Processes and the Influence of the Radioactivity of Thorium</td>
<td>S. R. Hunter and A. B. Budinger</td>
</tr>
<tr>
<td>on the Statistical Lag Time in Metal Halide Lamps</td>
<td></td>
</tr>
<tr>
<td>Breakdown of Air Gaps Under Oscillatory Simulated Switching Surges</td>
<td>M. S. Abu-Seada, S. N. Salem and H. Anis</td>
</tr>
<tr>
<td>CHAPTER 6: ELECTRODE PROCESSES AND SURFACE DISCHARGE PHENOMENA</td>
<td></td>
</tr>
<tr>
<td>Gas-Solid Interface Emissions Determined by the ESAW Charge Detection Method</td>
<td>C. M. Cooke and E. Gollin</td>
</tr>
<tr>
<td>Contribution of a Solid Insulator to an Electron Avalanche in Nitrogen Gas</td>
<td>S. M. Mahajan and K. W. Lam</td>
</tr>
<tr>
<td>Impulse Surface Charging and Flashover</td>
<td>O. Farish and I. Al-Bawy</td>
</tr>
<tr>
<td>Particle-Initiated Prebreakdown Characteristics With An Insulator Stressed on 60 Hz Voltage in SF6</td>
<td>H. T. Wang and R. G. Van Heeswijk</td>
</tr>
<tr>
<td>CHAPTER 7: PULSED POWER SWITCHING AND LASER INITIATED BREAKDOWN</td>
<td></td>
</tr>
<tr>
<td>High Power Gaseous Opening and Closing Switches</td>
<td>M. Kristiansen, A. Guenther and G. Schaefer</td>
</tr>
<tr>
<td>Laser Triggering of Gas Filled Spark Gaps</td>
<td>P. F. Williams</td>
</tr>
<tr>
<td>A New Approach for an Opening Switch for Repetitive Operations</td>
<td>W. Pfeiffer and D. Stolz</td>
</tr>
<tr>
<td>A Macroscopic Gas Breakdown Relationship</td>
<td>T. H. Martin</td>
</tr>
<tr>
<td>CHAPTER 8: TRANSMISSION LINES AND ELECTROMAGNETIC FIELDS: HEALTH ISSUES AND MEASUREMENTS</td>
<td></td>
</tr>
<tr>
<td>Mitigation of Potential Health Hazards of Transmission Line Fields</td>
<td>I. Gyuk</td>
</tr>
</tbody>
</table>
Electric and Magnetic Fields: An Engineer's Perspective
F. S. Young .. 365
Discussion .. 371

Relative Potency as a Means of Evaluating ELF Health Risks
C. E. Easterly and L. R. Glass .. 373

CHAPTER 9: CORONA

Influence of Memory on the Statistics of Pulsating Corona
R. J. Van Brunt and S. V. Kulkarni .. 383
Discussion .. 389

Pulsed Corona Experiments
E.J.M. van Heesch, A.M. Pemen, J. W. van der Snoek
and P.C.T. van der Laan ... 391
Discussion .. 397

Current Stability of Negative Corona Discharges in SF₆ and Delayed Spark Breakdown
K. Haddid and A. Goldman ... 399
Discussion .. 406

Verification of Direct-Current Corona Models Employing the Deutsch Approximation
A. Bouziane, K. Hidaka, M. C. Taplamacioglu and R. T. Waters 407

Frequency Effects in Alternating Current Corona
D. A. Rickard, J. Dupuy and R. T. Waters 413

A Mass Spectrometer Study of Ionization in SF₆ Corona: Influence of Water and Neutral By-Products
I. Sauers and G. Harman ... 421
Discussion .. 431

CHAPTER 10: HIGH VOLTAGE DC INSULATION; UTILITY EXPERIENCE WITH GIS

High Voltage DC Gas Insulation - A World-Wide Review
K. Nakanishi .. 433
Discussion .. 442

Gas-Insulated Substation Performance in Brazilian System
Discussion .. 449

GIS Insulation and Disconnector Operation
B. de Metz-Noblat and Y. Doin .. 451
Discussion .. 457

Experimental Studies on the Pressure Rise in GIS by Internal Arcs With Various Material Parameters and Test Arrangements
D. König and H. Schuhmann ... 459
Discussion .. 465

xi
Electromagnetic Interference With Control Equipment by GIS Switching Surges
K. Nojima, H. Murase, S. Nishiwaki, N. Tanabe and S. Yanabu .. 467

Abnormal Phenomena Caused by Contact Failure in 300 kV GIS
Y. Mukaiyama, F. Nonaka, I. Takagi, K. Izumi, T. Sekiguchi, A. Kobayashi and
T. Sumikawa ... 475

CHAPTER 11: GAS INSULATED SUBSTATIONS

Insulation Coordination in Gas Insulated Switchgear Against Lightning Overvoltages
T. Kawamura and I. Ozawa ... 481
Discussion ... 489

Impact on GIS Design by Reducing The Rated LIWL
Y. Murayama ... 491
Discussion ... 495

Transient Current and Voltage Behavior During Interruption of Small Capacitive
Currents With GIS-Disconnectors
C. Neumann, D. König and G. Imgrund 497

Fast Transients in Gas Insulated Substations - An Experimental and Theoretical Evaluation
P. F. Coventry and A. Wilson ... 503
Discussion ... 508

Characteristics of Ultra Low Level Partial Discharges in GIS Epoxy Insulators
Discussion ... 515

CHAPTER 12: RELIABILITY OF GIS/FAILURE MECHANISMS

Failure Mechanisms of Gas Insulation and at Gas-Insulator Interface: Their
Influence on Gas-Insulated Equipment
N. G. Trinh .. 517
Discussion ... 529

Prevention of Breakdown Due to Overvoltages Across Interruption of GIS Enclosure
J. M. Wetzer, M. A. van Houten and P.C.T. van der Laan 531
Discussion ... 537

The Application of Infrared Absorption Spectroscopy in Gas-Insulated Equipment
Diagnostics
Discussion ... 544

Disulfur Decafluoride (S_2F_{10}): A Review of the Biological Properties and Our Experimental
Studies of This Breakdown Product of SF_6
G. D. Griffin, M. S. Ryan, K. Kurka, M. G. Nolan, I. Sauers and D. R. James 545
Discussion ... 552

xii
CHAPTER 13: DIELECTRIC DIAGNOSTICS OF GAS-INSULATED EQUIPMENT

Improvement of the Reliability of GIS by Dielectric Diagnostics
T. Nitta, M. Sakai and S. Sakuma .. 563
Discussion .. 570

Detection of Partial Discharges During a Lightning Surge
B. F. Hampton, O. Farish and S. Larigaldie 571
Discussion .. 577

Phase Resolved Partial Discharge Measurements in Particle Contaminated SF₆
Insulation
L. Niemeyer, B. Fruth and H. Kugel 579
Discussion .. 586

An Electro Optic Method for Transient Field Measurements in GIS
I. Chalmers, W. Johnstone, G. Thursby and P. Coventry 587
Discussion .. 593

Analysis of SF₆ Discharge by Optical Spectroscopy
V. Zengin, S. Sützer, A. Gökmen, A. Rumeli and M. S. Dincer 595

CHAPTER 14: REPORTS OF DISCUSSION GROUPS

Group Discussion On Future Directions for Studies on Gaseous Dielectrics
Panelists: R. J. Van Brunt (Chairman), O. Farish, M. Goldman, D. König,
I. Sauers, J. E. Thompson, J. de Urquijo and J. M. Wetzer 601

Group Discussion On Industrial Outlook for Gas Dielectric Needs and Uses
Panelists: A. H. Cookson (Chairman), P. C. Bolin, F. Y. Chu, A. Diessner,
T. Ishii and J. J. Pachot ... 615

LIST OF PARTICIPANTS ... 629
PHOTOGRAPHS OF PARTICIPANTS 639
AUTHOR INDEX ... 645
SUBJECT INDEX ... 649