LOGIC SYNTHESIS AND OPTIMIZATION
THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING

Consulting Editor
Jonathan Allen

Latest Titles

Parallel Algorithms and Architectures for DSP Applications,
M. A. Bayoumi, editor
ISBN: 0-7923-9209-4

Digital Speech Processing: Speech Coding, Synthesis and Recognition
A. Nejat Ince, editor

Sequential Logic Synthesis, P. Ashar, S. Devadas, A. R. Newton

Sequential Logic Testing and Verification, A. Ghosh, S. Devadas, A. R. Newton
ISBN: 0-7923-9188-8

Introduction to the Design of Transconductor-Capacitor Filters,
J. E. Kardontchik
ISBN: 0-7923-9195-0

ISBN: 0-7923-9199-3

Fault Covering Problems in Reconfigurable VLSI Systems, R. Libeskind-Hadas,
N. Hassan, J. Cong, P. McKinley, C. L. Liu
ISBN: 0-7923-9231-0

High Level Synthesis of ASICs Under Timing and Synchronization Constraints
D.C. Ku, G. De Micheli

The SECD Microprocessor, A Verification Case Study, B.T. Graham
ISBN: 0-7923-9245-0

Field-Programmable Gate Arrays, S.D. Brown, R. J. Francis, J. Rose,
Z.G. Vranesci

Anatomy of A Silicon Compiler, R.W. Brodersen

Electronic CAD Frameworks, T.J. Barnes, D. Harrison, A.R. Newton,
R.L. Spickelmier
ISBN: 0-7923-9252-3

VHDL for Simulation, Synthesis and Formal Proofs of Hardware, J. Mermet
ISBN: 0-7923-9253-1

Wavelet Theory and its Applications, R. K. Young

Digital BiCMOS Integrated Circuit Design, S.H.K. Embabi, A. Bellacouar,
M.I Elmasry
ISBN: 0-7923-9276-0

Design Automation for Timing-Driven Layout Synthesis, S. S. Sapatnekar, S. Kang
ISBN: 0-7923-9281-7

Acoustical and Environmental Robustness in Automatic Speech Recognition,
A. Acero
ISBN: 0-7923-9284-1
CONTENTS

PREFACE xiii

1 A NEW EXACT MINIMIZER FOR TWO-LEVEL LOGIC SYNTHESIS 1
 R. K. Brayton, P. C. McGeer, J. V. Sanghavi,
 A. L. Sangiovanni-Vincentelli
 1.1 Introduction 1
 1.2 Notation 6
 1.3 The Minimum Canonical Cover 8
 1.4 Obtaining the Minimum Canonical Cover 13
 1.5 Generating the Minimum Cover From the Minimum Canonical Cover 23
 1.6 Heuristic Minimization Procedures 24
 1.7 Experimental Results 28
 1.8 Related Work 29

2 A NEW GRAPH BASED PRIME COMPUTATION TECHNIQUE 33
 O. Coudert, J. C. Madre
 2.1 Introduction 33
 2.2 Definitions and Notations 34
 2.3 The IPS Representation 36
 2.4 Prime Computation of Boolean Functions 44
 2.5 Prime Computation of Boolean Vectorial Functions 47
 2.6 Experimental Results 49
 2.7 Conclusion 54

3 LOGIC SYNTHESIZERS, THE TRANSDUCTION METHOD AND ITS
EXTENSION, SYLON

S. Muroga

3.1 Introduction 59
3.2 Transduction Method 60
3.3 Logic Design of MOS Networks 72
3.4 New Logic Synthesis System, SYLON 75
3.5 Conclusions 83

NETWORK OPTIMIZATION USING DON'T-CARES AND BOOLEAN RELATIONS

K-C. Chen, M. Fujita

4.1 Introduction 87
4.2 Multi-Level Combinational Networks 88
4.3 Permissible Functions, Don't-Cares, and Boolean Relations 89
4.4 Minimization Using Don't-Cares 90
4.5 Minimization Using Boolean Relations 97
4.6 Conclusion 105

MULTI-LEVEL LOGIC MINIMIZATION OF LARGE COMBINATIONAL CIRCUITS BY PARTITIONING

M. Fujita, Y. Matsunaga, Y. Tamiya, K-C. Chen

5.1 Introduction 109
5.2 Boolean minimization 112
5.3 Partitioning for Boolean minimizers 119
5.4 Top-down application of two-way partitioning 122
5.5 Experimental results 122
5.6 Conclusions 124

A PARTITIONING METHOD FOR AREA OPTIMIZATION BY TREE ANALYSIS

Y. Nakamura, K. Wakabayashi, T. Fujita

6.1 Introduction 127
6.2 Logic Partition and Partial Collapsing 128
6.3 Partial Collapsing Based on Tree Structure Analysis 132
6.4 Logic Optimization 139
9.9 Conclusions 210

10 EFFICIENT SPECTRAL TECHNIQUES FOR LOGIC SYNTHESIS 215
 D. Varma, E. A. Trachtenberg
10.1 Introduction 215
10.2 Transformation and Complexity of Boolean Functions 217
10.3 Efficient Spectral Methods for Logic Synthesis 223
10.4 Conclusion 230

11 FPGA DESIGN BY GENERALIZED FUNCTIONAL DECOMPOSITION 233
 T. Sasao
11.1 Introduction 233
11.2 Generalized Functional Decomposition 235
11.3 Generalized Functional Decomposition using BDD 241
11.4 Design Method for LUT Networks 246
11.5 Experimental Results 254
11.6 Conclusions and Comments 256

12 LOGIC SYNTHESIS WITH EXOR GATES 259
 T. Sasao
12.1 Introduction 259
12.2 Design Method of AND-EXOR circuits 261
12.3 Simplification of AND-EXOR expressions 268
12.4 Design Method for AND-OR-EXOR circuits 272
12.5 Experimental Results 278
12.6 Conclusions and Comments 282

13 AND-EXOR EXPRESSIONS AND THEIR OPTIMIZATION 287
 T. Sasao
13.1 Introduction 287
13.2 Several Classes of AND-EXOR Expressions 288
13.3 Comparison of Complexity 293
13.4 Minimization of PSDKROs 295
Contents

13.5 Experimental Results 306
13.6 Conclusion 309

14 A GENERATION METHOD FOR EXOR-SUM-OF-PRODUCTS EXPRESSIONS USING SHARED BINARY DECISION DIAGRAMS 313

K. Yasuoka

14.1 Introduction 313
14.2 Preliminaries 314
14.3 Algorithm 314
14.4 Experimental Results 317
14.5 Conclusion 321

15 A NEW TECHNOLOGY MAPPING METHOD BASED ON CONCURRENT FACTORIZATION AND MAPPING 323

M. Inamori, A. Takahara

15.1 Introduction 323
15.2 Concurrent Factorization and Mapping 327
15.3 Process of Technology Mapping 333
15.4 Experimental Results 337
15.5 Conclusions and Future work 339

16 GATE SIZING FOR CELL-BASED DESIGNS 341

W.-P. Lee, Y.-L. Lin

16.1 Introduction 341
16.2 Previous Works 344
16.3 The Theda.CBS System 344
16.4 Experimental Results 352
16.5 Summary and Future Works 355

A ABOUT THE AUTHORS 361
CONTRIBUTORS

Robert K. Brayton
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley
Berkeley, CA 94720, U.S.A.

Kuang-Chien Chen
Fujitsu America Inc.,
San Jose, CA 95134, U.S.A.

Olivier Coudert
BULL Corporate Research Center, Rue Jean Jaurès
78340 Les Clayes-sous-bois, France

Masahiro Fujita
Processor Laboratory,
FUJITSU LABORATORIES LTD.
1015 Kamikodanaka, Nakahara-Ku,
Kawasaki 211, Japan

Tomoyuki Fujita
C&C Systems Research Laboratories
NEC Corporation
4-1-1 Miyazaki Miyamae-Ku
Kawasaki 216, Japan

Minoru Inamori
NTT LSI Laboratories
LSI Design Systems Laboratory
3-1 Morinosato Wakamiya, Atsugi-shi,
Kanagawa 243-01, Japan

Seh-Woong Jeong
Department of Electrical and Computer Engineering
University of Colorado, Boulder,
Colorado 80309, U.S.A.

Wei-Po Lee
Department of Computer Science,
Tsing Hua University, Hsin-Chu,
Taiwan 30043, R.O.C.

Youn-Long Lin
Department of Computer Science,
Tsing Hua University, Hsin-Chu,
Taiwan 30043, R.O.C.

Jean C. Madre
BULL Corporate Research Center, Rue Jean Jaurès
78340 Les Clayes-sous-bois, France

Yusuke Matsunaga
Processor Laboratory,
FUJITSU LABORATORIES LTD.
1015 Kamikodanaka, Nakahara-Ku,
Kawasaki 211, Japan

Patrick C. McGeer
Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley
Berkeley, CA 94720, U.S.A.
In July 1992, the International Symposium on Logic Synthesis and Microprocessor Architecture was held in Iizuka, Japan. The papers presented at the symposium were quite significant and we decided to publish the most outstanding of those concerned with Logic Synthesis and Optimization in textbook form for graduate students and young researchers.

There seem to be few textbooks of logic synthesis and optimization on the market. Thus, we would have no option but to turn to conference papers and journal papers to familiarize the students with the current status of research in the field, but we find most of them are just unsuitable for the students. Naturally, those papers are not education-oriented; they only offer a highly abstract description or explanation of the new ideas presented, mostly without any accompanying examples and illustrations, because of limited space.

To enhance their self-containedness, all the papers selected for publication here were reviewed by several people and were revised, in some cases extensively, and additional examples and illustrations, designed to increase the reader's understanding, were incorporated.

This book, which is organized into 16 chapters, deals with the following topics: Two-level minimization, Multi-level minimization, Application of binary decision diagrams, Delay optimization, Asynchronous circuits, Spectral method for logic design, Field programmable gate array design, EXOR logic synthesis, and Technology mapping.

I believe that the book covers the essential areas of logic synthesis and optimization and I hope that it will create a new interest and provide stimulation for organizing new courses at universities.
Overview of the Book

This book is divided into 16 chapters.

The first two chapters are concerned with the minimization of sum-of-products expressions. Rather than generating the set of all the prime implicants followed by the minimal covering of it, the first chapter shows a method to derive the set covering directly and implicitly from the given expression. The second chapter shows a new method to derive the set of prime implicants and essential prime implicants. These methods are useful for the functions with many variables that cannot be solved by the conventional methods.

The next four chapters, Chapters 3, 4, 5 and 6 discuss various design methods for multi-level logic networks. Chapter 3 introduces the basic concepts of the Transduction methods along with recent results. To design compact multi-level networks, we can use Network don’t cares and Boolean relation. Chapter 4 compares the effectiveness of these two approaches. For designing large networks, Chapter 5 presents a partitioning method while Chapter 6 presents partial collapsing method.

Binary Decision Diagrams (BDDs) are indispensable in logic synthesis. Chapter 7 shows a method to solve 0-1 integer programming problem by using BDDs.

In designing logic circuits, the speed is also important as well as the cost of the circuits. Chapter 8 considers delay models, while Chapter 9 reviews the asynchronous systems.

Logic design can be done more elegantly in the spectral domain rather than Boolean domain. Chapter 10 shows methods for functional decomposition, prime implicant generation and don’t care assignment by spectral methods.

It is predicted that in the future, most digital systems will be designed with microprocessors, memories and Field Programmable Logic Devices. Chapter 11 presents a design method for Field Programmable Gate Arrays (FPGAs) directly from BDDs.

The next three chapters discuss the EXOR logic synthesis. Chapter 12 introduces the minimization of exclusive-or sum-of-products expressions (ESOPs), and ESOP based logic synthesis, Chapter 13 reviews various classes of AND-EXOR expressions, and Chapter 14 shows a fast method to simplify ESOPs.
In many cases, multi-level logic networks are designed without considering the detail of the target electronic circuits, and then they are converted into the specific electronic logic circuits. This conversion is called technology mapping. The last two chapters are concerned with this process. Chapter 15 presents a method to perform factorization and technology mapping at the same time. Chapter 16 considers the sizing of the gates so that the total network delay meets the constraint while the total chip size is minimized.

Acknowledgements

I would like to express my appreciation to all the contributors for their participation and prompt cooperation in the project, and those who agreed to review papers for us whose names are given elsewhere in this book.

I also thank all the people who attended the Symposium, and the members of the Program Committee for the International Conference on Logic Synthesis and Microprocessor Architecture.

I acknowledge with gratitude the generous financial support from the Kyushu Institute of Technology and Japanese companies which enabled us to hold the Symposium.

Discussion with Prof. M. Perkowski was quite helpful in the planning of this book. My special thanks go to him.

Finally, I would like to thank Mr. M. Matsuura and T. Amada for editing the \LaTeX files to produce the camera-ready copy. Without their help, the book would never have materialized.

Iizuka, Fukuoka, Japan

Tsutomu Sasao