HEADSPACE ANALYSIS OF FOODS AND FLAVORS
THEORY AND PRACTICE
Recent Volumes in this Series

Volume 483

TAURINE 4: Taurine and Excitable Tissues
Edited by Laura Della Corte, Ryan J. Huxtable, Giampietro Sgaragli, and Keith F. Tipton

Volume 484

PHYLOGENETIC PERSPECTIVES ON THE VERTEBRATE IMMUNE SYSTEM
Edited by Gregory Beck, Manickam Sugumaran, and Edwin L. Cooper

Volume 485

GENES AND PROTEINS UNDERLYING MICROBIAL URINARY TRACT VIRULENCE: Basic Aspects and Applications
Edited by Levente Emödy, Tibor Pál, Jörg Hacker, and Gabriele Blum-Oehler

Volume 486

PURINE AND PYRIMIDINE METABOLISM IN MAN X
Edited by Esther Zoref-Shani and Oded Sperling

Volume 487

NEUROPATHOLOGY AND GENETICS OF DEMENTIA
Edited by Markus Tolnay and Alphonse Probst

Volume 488

HEADSPACE ANALYSIS OF FOODS AND FLAVORS: Theory and Practice
Edited by Russell L. Rouseff and Keith R. Cadwallader

Volume 489

HEMOPHILIA CARE IN THE NEW MILLENNIUM
Edited by Dougald M. Monroe, Ulla Hedner, Maureane R. Hoffman, Claude Negrier, Geoffrey F. Savidge, and Gilbert C. White II

Volume 490

MECHANISMS OF LYMPHOCYTE ACTIVATION AND IMMUNE REGULATION VIII
Edited by Sudhir Gupta

Volume 491

THE MOLECULAR IMMUNOLOGY OF COMPLEX CARBOHYDRATES—2
Edited by Albert M. Wu

Volume 492

NEUROIMMUNE CIRCUITS, DRUGS OF ABUSE, AND INFECTIOUS DISEASES
Edited by Herman Friedman, Thomas W. Klein, and John J. Madden

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
HEADSPACE ANALYSIS OF FOODS AND FLAVORS

THEORY AND PRACTICE

Edited by

Russell L. Rouseff
University of Florida
Lake Alfred, Florida

and

Keith R. Cadwallader
University of Illinois at Urbana-Champaign
Urbana, Illinois

Springer Science+Business Media, LLC
CONTRIBUTORS

Jennifer M. Ames, Department of Food Science and Technology, The University of Reading, Whitenights, Reading RG6 6AP, England

Keith R. Cadwallader, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 202 Agricultural Bioprocess Laboratory, MC-640, Urbana, Illinois 61801

Jean Crouzet, Université Montpellier, Department Sciences et Technologie des Industries Alimentaires, Institute des Sciences de l’Ingénieur, Montpellier, France 34095

Vin Das, 515 Blue Ridge Avenue, Piscataway, New Jersey 08854

Stephen Elmore, Department of Food Science and Technology, The University of Reading, Whitenights, Reading RG6 6AP, England

Leslie Ettre, Bridgeport, Connecticut 06606

Willis James (Jim) Harper, Ohio State University, Department of Food Science and Technology, Columbus, Ohio 43210

John-Erik Haugen, Norwegian Food Research Institute, Osloveien 1, N-1430, Ås, Norway

Ray Marsili, Dean Foods Technical Center, Best Foods, Rockford, Illinois 61125

Janusz Pawliszyn, NSERC Industrial Research Chair Analytical Chemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N3L 3G1

Scott A. Rankin, 1121 Animal Sciences Building, Department of Animal Sciences, University of Maryland, College Park, Maryland 20742-2311

Russell Rouseff, University of Florida, CREC, Lake Alfred, Florida 33580
Contributors

Fereidoon Shahidi, Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3X9

Mathias K. Sucan, Applied Food Biotechnology, O’Fallon, Missouri 63366-1941

Gerhard Zehentbauer, Food & Beverage Technology Division, The Procter & Gamble Company, Cincinnati, Ohio 45253-8707
FOREWORD

There has been a resurgent interest in the measurement of headspace gas components as an analytical technique. Part of this increased interest is due to the introduction of new technologies such as solid phase micro extraction, SPME, as well as the introduction of automated techniques to collect and introduce the volatiles into the gas chromatograph. Recent innovative technologies such as electronic noses also rely on headspace sampling techniques.

Headspace techniques have always offered an attraction to food, flavor and environmental scientists as many food and environmental samples are difficult matrices from which to extract volatiles. Alternative techniques such as distillation, extraction or absorption are not only tedious but often produce artifacts in the process. In contrast, headspace techniques are rapid, relatively clean and usually do not require the use of solvents. Solventless techniques are becoming increasingly desirable as they do not incur additional disposal costs nor create environmental concerns.

Headspace analysis is not without its problems. Reproducability has been a problem of long standing which has been solved in large measure by a number of automated technologies that carefully control how samples are collected and desorbed. Some of the more persistent problems include how to interpret the differences between the results from static and dynamic headspace analyses. It is generally accepted that dynamic headspace techniques will produce extracts which have enriched the highly volatile components at the expense of the less volatile components. Static headspace samples are more reproducible but produce extracts containing low amounts of volatiles. Thus, it is often difficult to identify potent trace components in extracts from this technique. Finally, there appears to be no general agreement as to which technique produces extracts which are most representative of the original product.

This book attempts to bring together the latest advances in the increasingly divergent area of headspace analysis of food volatiles. The information is presented in the hope that it can be immediately applied by those working in this area as well as provide a springboard for ideas that might further improve this valuable technology.
Headspace gas analysis is an analytical technique that has been successfully applied to food flavors for over 20 years but has experienced a resurgence of interest and innovations in recent years. In the strictest sense, headspace analysis represents the direct collection, concentration and analysis of volatile components in the space immediately above a food or beverage. The technique offers several advantages for workers interested in how a product smells and ultimately tastes. It offers the advantages of speed, simplicity, and more importantly, represents the aroma profile a consumer is likely to experience just before consuming a product. Since only volatile components are collected, the sample is completely free of nonvolatile residues which commonly plague comparison liquid-liquid extracts of the same product.

Headspace analysis has undergone many advances which have not been addressed in a unified manner since George Charalambous edited *Analysis of Food and Beverages: Headspace Techniques in 1979*. The current volume was developed to examine recent developments in this field and has been organized according to the following outline:

- Overview of headspace analysis
- Headspace theory—definitions
- Sample matrix/binding—headspace interactions
- New techniques
 - Electronic nose—dynamic headspace
 - SPME—static headspace
- SPME applications
 - SPME/MS
 - SPME/GC-O
- Dynamic headspace/purge and trap techniques
- New approaches in headspace trapping and elution

This publication contains chapters on the basic theory of headspace analysis, as well as the theory and application of newly developed headspace techniques such as solid phase micro extraction, SPME, and electronic noses. New concentrating and desorption techniques are described in addition to a raft of food applications including tomato and citrus juices, alcoholic beverages, baguettes, dairy products, lipids, grill flavoring, baked potato, and meat. Chapters on off-flavors as well as aroma-food matrix interactions are also included.

The target audience for this book is food and flavor scientists, industrial flavorists,
prefumers, food technologists, and quality control managers as well as academics and students interested in flavors and fragrances.

The editors are most appreciative of the efforts of each of the chapter authors.

Russell L. Rouseff
Keith R. Cadwallader
CONTENTS

1. Headspace Techniques in Food, Fragrances and Flavors: An Overview 1
 Russell Rouseff and Keith Cadwallader

2. Headspace—Gas Chromatography: An Ideal Technique for Sampling Volatiles
 Present in Non-Volatile Matrices 9
 Leslie S. Ettre

3. Aroma Compounds-Proteins Interaction Using Headspace Techniques 33
 E. Jouenne and J. Crouzet

4. Electronic Noses in Food Analysis 43
 John-Erik Haugen

5. The Strengths and Weaknesses of the Electronic Nose 59
 W. James Harper

6. Solid Phase Microextraction 73
 Janusz Pawliszyn

7. SPME-MS-MVA as a Rapid Technique for Assessing Oxidation Off-Flavors
 in Foods 89
 R. T. Marsili

8. GC-Olfactometry with Solid Phase Microextraction of Aroma Volatiles from Heated
 and Unheated Orange Juice 101
 R. Rouseff, R. Bazemore, K. Goodner, and M. Naim

9. Headspace Volatile Aldehydes as Indicators of Lipid Oxidation in Foods 113
 Fereidoon Shahidi
10. A Comparison of Headspace Entrainment on Tenax with Solid Phase Microextraction for the Analysis of the Aroma Volatiles of Cooked Beef
 J. Stephen Elmore, Eleni Papantoniou, and Donald S. Mottram

11. Choice and Use of Standards for Dynamic Headspace Trapping and Application to the Analysis of the Volatiles of Baked Potato
 Jennifer M. Ames, S. Craig Duckham and Jokie Bakker

12. Aroma Components of an Oil-Based Grill Flavoring by Direct Thermal Desorption-Gas Chromatography-Olfactometry and Sample Dilution Analysis
 Thomas E. Webb and Keith R. Cadwallader

13. Solvent Desorption Dynamic Headspace Sampling of Fermented Dairy Product Volatiles
 S. A. Rankin

14. Dynamic Headspace Analysis of Fresh Tomato Juice
 Mathias K. Sucan and Gerald F. Russell

15. Apparatus for the Quantitative Analysis of the Aroma of French Bread and Its Loss during Storage
 G. Zehentbauer and W. Grosch

16. Automated, Microprocessor Controlled Short Path Thermal Desorption System for Analysis of Volatiles in Foods