Advances in Delivery Science and Technology

Series Editor

Michael J. Rathbone

For further volumes:
http://www.springer.com/series/8875
Preface

The ideal drug delivery system has been depicted as “getting the right amount of drug to the right place at the right time.” It is now widely accepted that making drug available “immediately” following oral administration does not provide such idealized delivery in many cases. Consequently strategies, materials, and technologies have evolved to control delivery by delaying, slowing, pulsing, or delivering to a specific region of the gastrointestinal tract. The introductory chapter in this book traces the history and evolution of the concepts and achievements that has brought the discipline to where it is today.

Despite the advent of many useful release-modifying polymers and technologies, one of the greatest barriers to providing an appropriate release profile (and associated plasma presence) is the gastrointestinal tract. Knowing and understanding its structure, tissues, mechanics, and functions, and the limitations (and possibilities) that these present in attaining a target plasma profile is a prerequisite for successful dosage form design. Chapter 2 provides such perspectives.

Proving efficacy and safety for a novel molecule is currently so difficult, time consuming, and expensive that industrial R&D-based organizations are under pressure to “hurry” a drug to market when it is shown to be effective and safe. More nuanced effects may only become apparent after widespread use, prompting dosage form redesign. Hence, most current controlled release oral dosage forms are “second-generation” products. Whether shortcomings in “first-generation” (mostly “immediate release”) products have contributed to “failures” in development cannot be stated but, conceivably, greater focus on a broader range of delivery options in phase 1 or phase 2 clinical trials, possibly allied with the use of relevant biomarkers, may offer hope that attrition can be reduced and performance optimized. Such possibilities are discussed from an industrial R&D perspective in Chapter 3.

It is clearly unrealistic (and expensive) to trial each and every delivery and formulation concept or system in human subjects. In vitro and animal studies are also valuable, both during exploratory and quality-monitoring phases. The range, predictive capabilities, and limitations of such models are presented and discussed in two chapters in this book.

The mechanisms by which release of drug from the dosage form is controlled can profoundly impact location, rate, and profile of release, and as a consequence,
the plasma profile following absorption. Such behaviors can be influenced by release-modifying polymers or mixtures thereof, the presence of other materials and geometric (shape and size) factors. This is a wide subject area that is reflected in several chapters devoted to such topics.

Manufacturing technologies are immensely important for imparting reliability and consistency to dosage form performance. Quality of the release modifiers is also crucial. Many, being polymeric, may contain residues that could destabilize the drug (or other excipients). Hence, consistency of quality is an important consideration. It is heartening therefore that high-quality information on such phenomena is being generated and published by excipient providers to guide the formulation or manufacturing technologist on material performance. Chapters on polymers for matrices, capsules for controlled release, and multiparticulates in this book emanate from such sources and can provide useful guidance when considering “quality-by-design-based programs.”

Fatty acids, fatty alcohols, and waxes that do not melt at body temperature are sometimes used to form insoluble matrices (possibly in combination with other materials) to slow release from dosage forms. Their capability for self-assembly in GI tract-like milieu is now evincing much interest, particularly with insoluble drugs, as controlled release platforms for the future. Hence, they merit a chapter on the topic, provided by probably the foremost group operating in this area (Monash University, Melbourne).

Regional delivery and control of drugs usually concern delivery to and absorption from the small intestine. On occasion, however, delivery in a controlled manner via the buccal cavity may be advantageous, in terms of onset of action or avoidance of hepatic metabolism. It is appropriate therefore that such “point of entry” (to the GI tract) delivery be allocated a chapter.

One of the “holy grails” for prolonging drug absorption (and consequent plasma presence) concerns retention of the dosage unit in the gastric region, drug being released gradually for absorption further along the GI tract. Gastroretentive strategies, devices, and performance are accordingly considered in a chapter.

Finally, drug delivery at “the other end” of the GI tract, both for local action and systemic absorption, must not be disregarded, particularly as lack of enzymatic activity in the colon makes it a tempting location for delivering peptides or other macromolecular entities. Hence, a chapter on colonic delivery is included.

These chapters have, as far as is possible, been formatted so that they can largely “stand alone.” However, some repetition is inevitable as materials and mechanisms may be common to more than one strategy. Furthermore, the editors would like to stress that satisfactorily controlling drug release requires a “holistic” approach. Knowledge of the drug, the release-controlling agents, the mode and site for delivery, as well as the absorptive processes associated with oral delivery need to be factored into the dosage form design strategy for getting the correct amount of drug “to the right place at the right time.” It is hoped therefore that insights contained in this volume provide the research scientist, formulation specialist, and manufacturing technologist with such broad-based information for dosage form design, manufacture, and control.
Acknowledgements

The assembly, editing and general enhancement of many of the chapters in this book would not have been so thorough without the input of a number of people who provided wise counsel, added value and generally assured that the information and perspectives had validity. The individuals listed below generously gave their time, advice and expertise during chapter compilation and editing. We are most grateful for such input as it made our workload less daunting and added greatly to the quality of the information.

Dr Kieran G. Mooney (Chapter 3)
Professor David J Brayden (Chapter 4)
Dr David P. Elder (Chapter 8)
Professor Howard N. Stevens (Chapter 9)
Professor Christopher J. H. Porter (Chapter 15)

The Editors
Contents

1 A Short History of Controlled Drug Release and an Introduction .. 1
 Alexander T. Florence

2 The Organization of the Gut and the Oral Absorption of Drugs: Anatomical, Biological and Physiological Considerations in Oral Formulation Development .. 27
 Clive G. Wilson

3 Controlling Drug Release in Oral Product Development Programs: An Industrial Perspective 49
 Luigi G. Martini and Patrick J. Crowley

4 Animal Model Systems Suitable for Controlled Release Modeling .. 71
 Steven C. Sutton and Philip L. Smith

5 In Vitro Testing of Controlled Release Dosage Forms During Development and Manufacture 91
 Michael J. Rathbone and James M. Butler

6 Oral Controlled Delivery Mechanisms and Technologies ... 109
 Hossein Omidian, Shahin Fesharaki, and Kinam Park

7 Drug–Polymer Matrices for Extended Release ... 131
 Sandip B. Tiwari, James DiNunzio, and Ali Rajabi-Siahboomi

8 Ion-Exchange Approaches to Controlling Drug Release ... 161
 Der-Yang Lee, Timothy Kutch, and Rick S. Chan

9 Pulsatile Delivery for Controlling Drug Release ... 179
 Sumalee Thitinan and Jason T. McConville
<table>
<thead>
<tr>
<th>10</th>
<th>Ordered Mesoporous Silica for the Delivery of Poorly Soluble Drugs</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Michiel Van Speybroeck, Randy Mellaerts, Johan Adriaan Martens, Pieter Annaert, Guy Van den Mooter, and Patrick Augustijns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paolo Colombo, Gaia Colombo, and Christine Cahyadi</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Extrudable Technologies for Controlling Drug Release and Absorption</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Daniel Bar-Shalom, Matthew Roberts, and James L. Ford</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Coated Multiparticulates for Controlling Drug Release</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Brigitte Skalsky and Sven Stegemann</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Capsules as a Delivery System for Modified-Release Products</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Sven Stegemann</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Lipids in Oral Controlled Release Drug Delivery</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Ben J. Boyd, Tri-Hung Nguyen, and Anette Müllertz</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Buccal Drug Delivery</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Michael A. Repka, Li-lan Chen, and Rick S. Chan</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Controlling Release by Gastroretention</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Mark D. Coffin and Matthew D. Burke</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Drug Delivery to the Colon</td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>Abdul W. Basit and Emma L. McConnell</td>
<td></td>
</tr>
</tbody>
</table>

About the Editors

Index
Contributors

Pieter Annaert Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Leuven, Belgium

Patrick Augustijns Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Leuven, Belgium

Daniel Bar-Shalom Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark

Abdul W. Basit The School of Pharmacy, University of London, London, UK

Ben J. Boyd Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

Matthew D. Burke GlaxoSmithKline R&D, Harlow, Essex, UK

James M. Butler GlaxoSmithKline R&D, Harlow, Essex, UK

Christine Cahyadi Dipartimento Farmaceutico, Parma, Italy

Rick S. Chan LTS Lohmann Therapy Systems Corp., West Caldwell, NJ, USA

Li-lan Chen GlaxoSmithKline Consumer Healthcare, Parsippany, NJ, USA

Mark D. Coffin Platform Technology and Science, GlaxoSmithKline R&D, NC, USA

Gaia Colombo Dipartimento Farmaceutico, Parma, Italy

Paolo Colombo Dipartimento Farmaceutico, Parma, Italy

Patrick J. Crowley Callum Consultancy LLC, Devon, PA, USA

James DiNunzio Pharmaceutical and Analytical R&D Department, Hoffmann-La Roche, Inc, Nutley, NJ, USA
Shahin Fesharaki Research and Development, Watson Pharmaceuticals, Fort Lauderdale, FL, USA

Alexander T. Florence Professor Emeritus, School of Pharmacy, University of London, London, UK

James L. Ford School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK

Timothy Kutch K Kelly OCG at Johnson & Johnson, McNeil Consumer Healthcare, Fort Washington, PA, USA

Der-Yang Lee Johnson & Johnson, McNeil Consumer Healthcare, Fort Washington, PA, USA

Johan Adriaan Martens Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Leuven, Belgium

Luigi G. Martini Institute of Pharmaceutical Sciences, King’s College, London, UK

Emma L. McConnell MSD, Hoddesdon, Hertfordshire, UK

Jason T. McConville College of Pharmacy, The University of Texas at Austin, Austin, TX, USA

Randy Mellaerts Center for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Leuven, Belgium

Anette Müllertz Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, Denmark

Tri-Hung Nguyen Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

Hossein Omidian College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA

Kinam Park Departments of Biomedical Engineering and Pharmaceutics, Purdue University, West Lafayette, IN, USA

Ali Rajabi-Siahboomi Colorcon Inc. Global Headquarters, Harleysville, PA, USA

Michael J. Rathbone School of Pharmacy, Griffith University, Brisbane, QLD, Australia

Michael A. Repka Department of Pharmaceutics, National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA

Matthew Roberts School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
Brigitte Skalsky Evonik Roehm GmbH, Darmstadt, Germany
Philip L. Smith PNPSmith Advisors, Haverford, PA, USA
Sven Stegemann Capsugel, Bornem, Belgium
Steven C. Sutton Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
Sumalee Thitinan College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
Sandip B. Tiwari Colorcon Inc. Global Headquarters, Harleysville, PA, USA
Michiel Van Speybroeck Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Leuven, Belgium
Guy Van den Mooter Laboratory for Pharmacotechnology and Biopharmacy, Katholieke Universiteit Leuven, Leuven, Belgium
Clive G. Wilson Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK