Advances in Cancer Stem Cell Biology
Roberto Scatena · Alvaro Mordente
Bruno Giardina
Editors

Advances in Cancer Stem Cell Biology
The classic hallmarks of cancer are a poorly differentiated phenotype, and a cellular and genetic heterogeneity. In the past, the cellular diversity of cancer has mostly been attributed to the genetic instability of its cells. As the tumor cell population expands, individual cells pick up random mutations, and their molecular identity starts to diverge. By the time the cancer is detected, the millions of cells that make up the tumor have become as different from each other.

Cancer stem cells (CSCs) or, as defined by other authors, tumor-maintaining cells or cancer stem-like cells are a subpopulation of cancer cells that acquired some of the characteristics of stem cells to survive and adapt to ever-changing environments. These include the ability to self-renew and the capacity to produce progenitors that differentiate into other cell types.

It has been originally hypothesized that CSCs could potentially arise from normal stem or early progenitors. Now, the longstanding notion that fully committed and specialized cells might de-differentiate over the course of tumor initiation and progression to originate CSCs has been reevaluated. At present, data emerge to indicate that cancer cells that resemble stem cells need not be part of the original tumor but rather may emerge during later stages of tumor development. The observed tumor heterogeneity is probably a combination of growing genomic instability and epigenetic instability associated with the acquisition of a stem cell-like phenotype. These instability promote a new a fundamental peculiarity of CSCs, i.e., genetic plasticity.

CSCs represent the ideal justification for a lot of intriguing and obscure aspects of cancer pathogenesis (i.e., cancer cell dormancy, chemoresistance, local and distant relapses). The complex pathophysiology of CSCs and its important direct and indirect implications in molecular and cellular biology of cancer, at present, render this topic particularly interesting for Chemists, Biochemists, Pharmacologists, Biologists, Geneticists who are studying different aspect of experimental oncology. Moreover, considering the enormity of the clinical implications related to CSCs and/or to “cancer cells like stem cell,” a growing number of researchers should modify and/or adapt its field of study in consideration of this relatively new topic.
At last, the identification of a molecular phenotype for these modified stem cells, associated to an accurate definition of their typical derangement in cell differentiation and metabolism, can represent a fundamental advance in terms of early diagnosis and selective therapy of cancer. At last but not least, the knowledge of pathogenetic mechanisms at the basis of CSCs can enlarge and ameliorate the therapeutic applications of the normal adult stem cells (i.e., regenerative medicine, tissue engineering, biotechnology applications) by reducing the risk of a deranged, uncontrolled, and thereby potentially tumorigenic stem cell differentiation.

A critical and continuous updating to the different pathophysiological aspects of this CSC may certainly help the development of a research, not only limited to cancer but also really useful and harmless for patients, by stimulating potential clinical applications in terms of diagnosis and above all of therapy.

Rome, Italy

Roberto Scatena
Alvaro Mordente
Bruno Giardina
Contents

1 Cancer Stem Cells: A Revisitation of the “Anaplasia” Concept.......................... 1
 Roberto Scatena

2 Stem Cells and Cancer Stem Cells: New Insights................................. 17
 Toru Kondo

3 Molecular Biology of Cancer Stem Cells.. 33
 Oswaldo Keith Okamoto

4 Biomarkers of Cancer Stem Cells ... 45
 Jun Dou and Ning Gu

5 Cancer Stem Cells and the Microenvironment 69
 Alfonso Colombatti, Carla Danussi, Eliana Pivetta, and Paola Spessotto

6 Leukemia Stem Cells ... 85
 Steven W. Lane and David A. Williams

7 Cancer Stem Cells and the Central Nervous System............................ 105
 Serdar Korur, Maria Maddalena Lino, and Adrian Merlo

8 Cancer Stem Cells and Glioblastoma Multiforme: Pathophysiological and Clinical Aspects... 123
 Akio Soeda, Mark E. Shaffrey, and Deric M. Park

9 Breast Cancer Stem Cells.. 141
 Nuria Rodriguez Salas, Enrique Gonzalez Gonzalez, and Carlos Gamallo Amat

10 Colon Cancer Stem Cells.. 155
 Ugo Testa
11 Liver Tumor-Initiating Cells/Cancer Stem Cells: Past Studies, Current Status, and Future Perspectives 181
Kwan Ho Tang, Stephanie Ma, and Xin-Yuan Guan

12 Pancreatic Cancer Stem Cells ... 197
Erica N. Proctor and Diane M. Simeone

13 Cancer Stem Cells and Renal Carcinoma .. 211
Benedetta Bussolati and Giovanni Camussi

14 Cancer Stem Cells: Proteomic Approaches for New Potential Diagnostic and Prognostic Biomarkers 221
Patrizia Bottoni, Bruno Giardina, and Roberto Scatena

15 Cancer Stem Cells: An Innovative Therapeutic Approach 239
Roberto Scatena, Patrizia Bottoni, Alessandro Pontoglio, Salvatore Scarà, and Bruno Giardina

16 Cancer Stem Cell and ATP-Binding Cassette: Which Role in Chemoresistance? ... 267
Andrea Silvestrini, Elisabetta Meucci, Giuseppe Ettore Martorana, Bruno Giardina, and Alvaro Mordente

17 Stem Cells and Cancer Stem Cells: Biological and Clinical Interrelationships ... 289
Cinzia Bagalà and Carlo Barone

18 Immunomodulatory Functions of Cancer Stem Cells 301
Tobias Schatton, Jennifer Y. Lin, and Markus H. Frank

Index .. 333
Contributors

Carlos Gamallo Amat Pathology Department, Medical School, Autónoma University, Madrid, Spain

Cinzia Bagalà Division of Medical Oncology, Department of Internal Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy cinziabagala@libero.it

Carlo Barone Division of Medical Oncology, Department of Internal Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy carlobarone@rm.unicatt.it

Patrizia Bottoni Department of Laboratory Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy patrizia.bottoni@rm.unicatt.it

Benedetta Bussolati Renal and Vascular Physiopathology Laboratory, Department of Internal Medicine, Molecular Biotechnology Centre and Research Centre for Molecular Medicine, University of Torino, Cso Dogliotti 14, 10126 Torino, Italy benedetta.bussolati@unito.it

Giovanni Camussi Renal and Vascular Physiopathology Laboratory, Department of Internal Medicine, Molecular Biotechnology Centre and Research Centre for Molecular Medicine, University of Torino, Cso Dogliotti 14, 10126 Torino, Italy

Alfonso Colombatti Division of Experimental Oncology 2, National Cancer Institute IRCCS-CRO, Via Franco Gallini 2, 33081 Aviano, Italy acolombatti@cro.it

Carla Danussi Division of Experimental Oncology 2, National Cancer Institute IRCCS-CRO, Via Franco Gallini 2, 33081 Aviano, Italy
Jun Dou Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
njdoujun@yahoo.com.cn

Markus H. Frank Transplantation Research Center, Children’s Hospital Boston and Brigham and Women’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA

Bruno Giardina Department of Laboratory Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy
bgiardina@rm.unicatt.it

Enrique González González Surgery Department, Hospital del Henares, Madrid, Spain

Ning Gu School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
guning@seu.edu.cn

Xin-Yuan Guan Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
xyguan@hkvc.hku.hk

Toru Kondo Laboratory for Cell Lineage Modulation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
Department of Stem Cell Biology, Ehime University Proteo-Medicine Research Center, Shitsukawa, To-on, Ehime 791-0295, Japan
tkondo@m.ehime-u.ac.j

Serdar Korur Laboratory of Molecular Neuro-Oncology, University Hospital Basel, Bucherstrasse 26, Bern CH-3006, Basel, Switzerland
serdar.korur@unibas.ch

Steven W. Lane Division of Immonology, Queensland Institute of Medical Research, Brisbane, Australia
steven.lane@gimr.edu.au

Jennifer Y. Lin Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA

Maria Maddalena Lino Laboratory of Molecular Neuro-Oncology, University Hospital Basel, Bucherstrasse 26, Bern CH-3006, Basel, Switzerland

Stephanie Ma Department of Pathology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
stephanie.ma@gmail.com
Giuseppe Ettore Martorana Institute of Biochemistry and Clinical Biochemistry, Catholic University, School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy

Adrian Merlo Laboratory of Molecular Neuro-Oncology, University Hospital Basel, Büchserstrasse 26, Bern CH-3006, Basel, Switzerland adrian.merlo@gmx.ch

Elisabetta Meucci Institute of Biochemistry and Clinical Biochemistry, Catholic University, School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy

Alvaro Mordente Institute of Biochemistry and Clinical Biochemistry, Catholic University, School of Medicine, Largo F. Vito 1, 00168 Rome, Italy alvaro.mordente@rm.unicatt.it

Oswaldo Keith Okamoto Centro de Estudos do Genoma Humano, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, CEP 05508-090, São Paulo – SP, Brazil keith.okamoto@usp.br

Deric M. Park Department of Neurological Surgery, University of Virginia, 800212 Charlottesville, VA 22908, USA dmp3j@virginia.edu

Eliana Pivetta Division of Experimental Oncology 2, National Cancer Institute IRCCS-CRO, Via Franco Gallini 2, 33081 Aviano, Italy

Alessandro Pontoglio Department of Laboratory Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy espeedy@libero.it

Erica N. Proctor Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical Center, 1500 E Medical Center Drive, TC 2210B, Ann Arbor, MI 48109, USA eproctor@med.umich.edu

Nuria Rodríguez Salas Medical Oncology Unit, Hospital Universitario Infanta Leonor, C/ Gran Vía del Este nº 80, 28031 Madrid, Spain nuria.rodriguez@salud.madrid.org

Salvatore Scarà Department of Laboratory Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy

Roberto Scatena Department of Laboratory Medicine, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy r.scatena@rm.unicatt.it

Tobias Schatton Transplantation Research Center, Children’s Hospital Boston and Brigham and Women’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA tobias.schatton@tch.harvard.edu
Mark E. Shaffrey Department of Neurological Surgery, University of Virginia, 800212 Charlottesville, VA 22908, USA

Andrea Silvestrini Institute of Biochemistry and Clinical Biochemistry, Catholic University, School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy

Diane M. Simeone Departments of Surgery and Molecular and Integrative Physiology, University of Michigan Medical Center, 1500 E Medical Center Drive, TC 2210B, Ann Arbor, MI 48109, USA simeone@med.umich.edu

Akio Soeda Department of Neurological Surgery, University of Virginia, 800212 Charlottesville, VA 22908, USA

Paola Spessotto Division of Experimental Oncology 2, National Cancer Institute IRCCS-CRO, Via Franco Gallini 2, 33081 Aviano, Italy

Kwan Ho Tang Department of Pathology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong

Ugo Testa Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy ugo.testa@iss.it

David A. Williams Division of Hematology/Oncology, Children’s Hospital Boston, Department of Pediatrics, Harvard Medical School, Boston, MA, USA Department of Pediatrics Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Boston, MA, USA