The Clubfoot
George W. Simons
Editor

The Clubfoot
The Present and a View of the Future

With a Foreword by M.O. Tachdjian

With 328 Figures in 523 Parts, 3 Figures in Color

Springer-Verlag
New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest
This book is dedicated to all the children of the world born with congenital clubfeet and to the orthopedic surgeons who care for them.
Foreword

During the past two decades, there has been great progress in the management of clubfoot. The First International Congress on Clubfeet was a landmark gathering of the leaders in the world in the treatment of clubfoot. The congress was organized by Dr. George W. Simons—a difficult and demanding task. The quality of the papers published in this monograph reflects his pursuit of excellence and attention to detail.

Still, there are many controversies in the management of clubfoot; it is evident that there is disagreement as to terminology and definition.

What is congenital talipes equinovarus? It is a deformity of multifactorial pathogenesis in which the heel is inverted, the forefoot and midfoot are inverted and adducted (varus), and the ankle and subtalar joints are in equinus position. The forefoot is in cavus with the toes at a lower level than the heel. It is vital, however, that one be more specific in the definition of talipes equinovarus.

It is in utero displacement and malalignment of the talocalcaneal, navicular, and calcaneocuboid joints; the talus is plantar flexed with its anterior end rotated laterally and its head and neck tilted medially and plantarward; the calcaneus is plantar flexed with its anterior end rotated medially and its posterior end rotated laterally and tethered to the fibular malleolus; the navicular is displaced medially and dorsally, and the cuboid is displaced medially in relation to the calcaneus. These articular malalignments are firmly fixed by capsular, ligamentous, and musculotendinous contractures.

The source of disagreement among researchers in clubfoot is due to the variability of severity of expression of a complex deformity produced by many etiologic factors. It is imperative that the pathology be delineated and the severity of the deformity of each individual case be assessed and classified.

The treatment of intrinsic, rigid, congenital talipes equinovarus is primarily surgical; nonoperative measures are preliminary steps for facilitation of definitive correction of the deformity, i.e., concentric reduction of the talocalcaneonavicular and calcaneocuboid joints. It is crucial that one not persevere with prolonged immobilization in casts, because disuse atrophy of muscles and rigidity of joints are not biologically acceptable. Motion is life! It is vital to restore mobility and function of a foot that is deformed in utero.

Another controversial issue is the value of radiography. Dr. Simons has demonstrated, without question, the importance of radiographic imaging.
in the delineation of pathology and the importance of an extensive, à la carte release in correction of this complex deformity. The value of intraoperative radiography cannot be overemphasized.

There is much ado about nothing as to the surgical approach—Cincinnati, posteromedial and lateral, or posterolateral and medial; it does not matter what surgical exposure is used, provided the ligamentous, capsular, and musculotendinous contractures are released and concentric reduction is achieved. Overcorrection should be avoided.

Meticulous postoperative care is crucial for success. Postsurgical immobilization in cast should not exceed 6 weeks. Part-time splinting and the use of dynamic means to restore mobility and function are important. It behooves the surgeon to be diligent in preventing complications. No matter how meticulous and thorough the surgeon is, problems will arise. Recurrence of deformity because of scar formation may occur. The medial tilting of the head and neck of the talus may not correct with bony growth after concentric reduction. Dynamic imbalance of muscles may cause supination deformity of the forefoot and midfoot. A percentage of patients will require revision surgery or tendon transfers to restore dynamic balance of muscles acting on the foot and ankle. The calf will be atrophic; the foot will be small.

I hope that, in the future, there will be periodic congresses on clubfeet, and that advances in technology of the biologic sciences and imaging will further advance our understanding of the pathomechanics, pathology, and treatment of talipes equinovarus.

Chicago, Illinois

Mihran O. Tachdjian, M.S., M.D.
Jusepe de Ribera’s
The Boy with the Clubfoot

Courtesy of the Louvre Museum, Paris
About the Painting,
The Boy with the Clubfoot

Aware that there was considerable controversy about the cause of the affliction of the subject in this painting, I nevertheless chose Jusepe de Ribera's *Le Pied Bot* as a keynote theme for the First International Congress on Clubfeet. A reproduction of the painting appeared on announcements of the congress and on the course handbook. It now also appears in this monograph.

Understanding, this choice resulted in several telephone calls and considerable correspondence, with a number of well-intentioned opinions and comments from colleagues stating that the subject, in fact, had some malady other than clubfoot—most probably cerebral palsy. Numerous aspects of the painting were cited as reasons for these comments. The most erudite of these comments came from Leo Arthur Green, M.D., of Jackson Heights, New York, who unfortunately was unable to attend the congress.

In Dr. Green's evaluation of the boy's malady, he points out several other possibilities for the differential diagnoses. These include trauma, stroke, and spastic hemiplegia.

Dr. Judy Hall, a medical geneticist in Vancouver, British Columbia, has suggested amyoplasia congenita (arthrogryposis) on the basis of the bilateral wrist flexion, elbow extension, and shoulder pronation contractions. In addition, she comments on the boy's apparent trunk-leg disproportion, but does not think he had a form of dwarfism.1,2

Because of the considerable interest expressed about the painting, I visited the archives of the Louvre Museum in Paris in an effort to answer a number of questions that had been asked about both the painting and the artist. After several afternoons of perusing the vast correspondence on this painting, I selected the single most informative document about *Le Pied Bot*. I have chosen to reproduce here excerpts from both Dr. Green's letter and the Louvre document. I hope that you will find these as informative and interesting as I have.

The Boy with the Clubfoot: Who Advised the Artist?

Leo Arthur Green

[Dr. Leo Green has been treating clubfeet for over 50 years. In 1954, during his visit to the ALYN Orthopaedic Hospital in Jerusalem, his interest in children's foot disorders led to his establishing the American Society for Crippled Children in Israel, an organization devoted to fund-raising in the United States. I am grateful to him for allowing me to reproduce excerpts from his letter.—Ed.]

A painting of the early 17th century by [Jusepe de] Ribera, which today hangs in the Louvre Museum in Paris, was used as the keynote theme for the cover of the announcement of the First International Congress on Clubfeet at the Medical College of Wisconsin in Milwaukee, on September 5th and 6th, 1990.

The viewer's attention is drawn to several areas in the painting:

The fact that the upper and lower limbs are involved suggests that he may have a right hemiplegia and that the right foot is not a true clubfoot. . . . McCauley\(^3\) refers to Ribera's painting as depicting "a youth with a talipes equinovarus as part of a right-sided hemiplegia." In general, however, clubfoot is not frequently associated with hemiplegia.

The right shoulder appears to be lower than the left, which supports the long, and presumably heavy, staff. There is a pouch hanging on the right hip from the shoulder. The elbow is extended and the wrist is flexed. The hand seems to be grasping the pouch, but the visible 5th and 4th metacarpophalangeal joints appear to be extended and the proximal interphalangeal joints flexed, suggesting an ulnar clawed hand. [Possibly a flaccid paralysis, i.e., polio.—Ed.]

The right foot exhibits severe equinus deformity but no varus. [Cavus as well?—Ed.] In addition, there is considerable shortening of the right leg, with the metatarsophalangeal joints appearing to be extended with the proximal and distal interphalangeal joints being held in flexion, forcing the full weight to be borne on the metatarsal heads. The adult with typical uncorrected equinovarus deformity walks on the outer border of the foot and not on the metatarsal heads. [This data further reinforces the possibility of a paralytic deformity.—Ed.]

In summary then, it appears that a strong case may be made for questioning the name of the painting. Who, if anyone, was the artist's medical adviser? It is obvious that Ribera was a keen observer and depicted the medical condition of his subject accurately in a most detailed and artistic manner, even if the painting may have been named incorrectly.

[Dr. Green's analysis provides considerable food for thought. I would agree that the artist depicted the subject's condition accurately, whereas medical knowledge at that time, no doubt, failed to appreciate the various

pathoanatomic subtleties of the boy's deformity. Other possibilities include a form of dwarfism and, possibly, one of the many associated syndromes that occur with clubfeet.—ED.

Ribera's The Boy with the Clubfoot: Image and Symbol*

Edward J. Sullivan

Jusepe de Ribera's The Clubfooted Boy, painted in 1642 and now in the Louvre, is one of this artist's most intriguing works. It is also a picture of considerable iconographic complexity which, for the most part, has gone unrecognized.

Given its humble subject matter, it is a surprisingly imposing painting. We see a young boy in tattered clothes standing erect, grinning as he jauntily supports a crutch over his shoulder. In his right hand he holds a large hat and in his left there is a cartellino, or small piece of paper, on which are written the words DA MIHI ELIMOSINAM PROPTER AMOREM DEI or "Give me alms for the love of God."

Many writers in the past have sought to place The Clubfooted Boy in the pictorial tradition of dwarfs and jesters, which was especially strong in Spain.2 This tradition matured in the mid-17th century with Velázquez's portraits of dwarfs . . . While Ribera does not illustrate the specific social conditions that contributed to the poverty of The Clubfooted Boy, he makes no attempt to dissimulate the harshness of his life by dwelling on the details of his deformity.

A relationship to northern European depictions of beggars and cripples may be noted by comparison with such works as Bruegel the Elder's Cripples of 1568 (Louvre). . . . In Bruegel's painting, as in some other Dutch and Flemish versions of the subject, physical defects are equated with defects of the soul, as an inscription on the reverse of the picture attests.3 . . . Essentially, however, Ribera's image belongs to a different, particularly Spanish conception of the lame and deformed. . . .

. . . Ribera's subject, as the popular title implies, is actually deformed. The clubbed foot and the wide open mouth, in which the decaying gums are carefully drawn, make this fact perfectly clear.

Perhaps the best way to approach the painting is to take account of the features that contribute to its unusual individuality and enduring appeal. First of all, there is the broad smile. Why should a poor, lame child be

*Painting signed and dated "Jusepe de Ribera Español/F, 1642." It was acquired by the Louvre in 1869 as part of the LaCaze Bequest (Accession n. MI.893).
smiling? The almost triumphant expression maintained despite the painful mouth condition is reinforced by the way he holds his crutch over his shoulder in the manner of a young soldier, carrying his gun, instead of using it to walk, as a cripple normally would.

Ribera's *The Clubfooted Boy* . . . becomes understandable within a visual tradition that used the figure with a crutch as a symbol of charity received, a tradition that developed more strongly in Spain than in any other country. Ribera, however, worked mostly in Naples and he is often thought to be more representative of the developments of baroque painting in Italy than in Spain. Yet Naples was a city under Spanish domination and Ribera was the favorite artist of the Spanish viceroys. In fact, a label on the back of the picture that was discovered in the early 1960s, points to this work as having been commissioned by Ramiro Felipe de Guzman, Duke of Medina de las Torres and Viceroy of Naples from 1637 to 1644.* Bellori¹ states that Ribera actually resided for long periods of time in the ducal palace. The fact that *The Clubfooted Boy* was executed under the aegis of Medina de las Torres is particularly significant, for it was during these years that Ribera returned to a more “Hispanic” mode in style and subject matter after years of adapting his imagery to the more classical Italianate taste of his former patron, the Count of Monterrey, who had been responsible for bringing Domenichino to Naples in 1633.

During the vice-regency of Medina de las Torres, Ribera experienced an intensification of what may be called his brilliant “naturalistic abstractions,” . . . highly simplified naturalism was, of course, not new to Ribera with the advent of the patronage of Medina de las Torres. . . .

The Clubfooted Boy conforms to the known characteristics of Medina de las Torres's taste. An unidealized figure is depicted and there is an abstraction of detail, with a subtle presentation of what remains. It is the single purified image, the distilled residue of the scene that is the most significant. We see in this painting a smiling cripple, rejoicing in his poverty, embodying the words of the first beatitude: “Blessed are the poor, for theirs is the kingdom of God.” As the agent through which the charity of the more fortunate is accomplished (gaining for them heavenly merit), the child encourages the generous person to enact the words of the seventh beatitude: “Blessed are the merciful, for they shall obtain mercy.”

. . . This same spirit of specific detail and pious naturalism is behind Ribera's portrayal of *The Clubfooted Boy*. In the picture the viewer has nothing else on which to focus his attention but the child. The boy's smile is not the roguish grin of a trickster but an attitude radiating inner joy. He is not only gifted with true poverty but, in receiving the alms for which he asks with the *cartellino*, he becomes the means through which more fortunate souls will receive grace and, consequently, salvation. Indeed, he holds an outsized hat suggesting that a generous soul has already shared his worldly possessions with the child. *The Clubfooted Boy* represents the triumph of poverty—a militant image that is further strengthened by the crutch held over his shoulder like a musket, and by the proud, upright stance maintained despite a painful affliction.

. . . If we look more deeply into the subtle meanings of [Ribera's paint-

¹This label was first published by Jeanine Baticle in the catalogue of the exhibition *Trésors de la Peinture Espagnole, Églises et Musées de France*, Paris (Louvre and Musée de Artes Décoratifs), 1963, no. 72, 193–195.
ing] a richer and more profound artistic personality emerges. Ribera should be recognized not merely as a practitioner of an astringent Caravaggism, but as a highly original, highly innovative creator who employed earthbound naturalism for spiritual motives.

References
Contents

Foreword .. vii
M. O. Tachdjian

About the Painting, The Boy with the Clubfoot xi
George W. Simons

- *The Boy with the Clubfoot: Who Advised the Artist?* xii
 Leo Arthur Green

- *Ribera’s The Boy with the Clubfoot: Image and Symbol* xiii
 Edward J. Sullivan

Introduction .. xxvii

Acknowledgments .. xxxv

Contributors .. xxxvii

Definition of Terms and Abbreviations ... xlvii

1. **Etiology** .. 1

 Introduction .. 1

 Etiological Theories of CTEV 2
 George W. Simons

 Understanding Muscle Pathology 2
 J. E. Handelsman and R. Glasser

 Morphometric Study of Muscles in Congenital Idiopathic Clubfoot 7
 *H. Mellerowicz, M. Sparmann, A. Eisenschenk,
 S. Dorfmuller-Kuchlin, and G. Gosztonyi*

 Histochemical Studies in Congenital Clubfeet 16
 *A. Kojima, H. Nakahara, N. Shimizu, I. Taga, K. Ono,
 I. Nonaka, and K. Hiroshima*

xvii
Muscle Pathology in Clubfoot and Lower Motor Neuron Lesions 21
J. E. Handelsman and R. Glasser

Etiological Considerations of Congenital Clubfoot Deformity 31
N. Shimizu, S. Hamada, M. Mitta, K. Hiroshima, and K. Ono

Neurogenic Origin of Talipes Equinovarus .. 39
R. F. Martin, G. Milo-Manson, A. McComas, and S. Levin

Anomalous Muscles in Clubfeet .. 42
H. Sodre, S. Bruschini, A. A. C. Magalhaes, and A. Lourenco

A Vascular Hypothesis for the Etiology of Clubfoot ... 48
D. R. Hootnick, D. S. Packard, Jr., E. M. Levinsohn, and A. Wladis

Color Doppler Imaging for Assessment of Arterial Anatomy in Congenital Skeletal Foot Deformity .. 59
R. A. Schwartz, D. Kerns, and M. Fillinger

Discussion ... 62
Editor’s Comments ... 64

2. Laboratory and Nonclinical Evaluations: Neuropsychiatric Evaluation, Pathomechanics, Magnetic Resonance Imaging, Gait Analysis .. 66

Introduction .. 66

Neuropsychiatric Assessment of Infants Treated Surgically for Congenital Clubfoot During the First Year of Life .. 67
F. Motta and S. Merello

A Mathematical Model of Congenital Clubfoot .. 68
G. T. Rab

Recognition and Management of the Atypical Idiopathic Clubfoot 76
V. Turco

Magnetic Resonance Imaging in Congenital Talipes Equinovarus 77
D. Downey, J. Drennan, and J. Garcia

Gait Analysis in Clubfeet: An Experimental Study .. 81
A. Campos da Paz, Jr., A. Ramalho, Jr., A. Momura, L. Braga, and M. Almeida

Discussion .. 84
Editor’s Comments ... 85

3. Classification and Evaluation .. 88

Introduction: ... 88
Contents

CLASSIFICATION

Classification Versus Evaluation of Congenital Talipes Equinovarus .. 89
George W. Simons

Clinical Classification of Congenital Clubfeet 91
S. Pandey and A.K. Pandey

Classification of Talipes Equinovarus 92
A. Dimeglio

EVALUATION

Preoperative Evaluation

Clinical Assessment of Clubfoot Deformity 93
A. Catterall

Preoperative Clinical Assessment of Clubfoot 97
N.C. Carroll

CTEV Equinus Severity Grading Scale 98
D. Stevens and S. Meyer

Intraoperative Evaluation

Intraoperative Evaluation Form (Checklist) 103
R.M. Barnett, Sr.

Postoperative Evaluation

Can Clubfeet Be Evaluated Accurately and Reproducibly? 104

Functional Rating System for Evaluation of Long-Term Results of Clubfoot Surgery 114
W.B. Lehman, D. Atar, A.D. Grant, and A.M. Strongwater

Postoperative Rating System for Clubfeet 117
Douglas McKay

Surgical Follow-Up: Talipes Equinovarus 118
R.M. Barnett, Sr., J.G. Stark, J.E. Johansen, and J. Drogt

Pre-, Intra-, and Postoperative Evaluation

Classification and Evaluation of Congenital Talipes Equinovarus .. 120
J.L. Goldner and R.D. Fitch

Discussion ... 139

Editor's Comments ... 141

4. Radiographic Evaluation ... 143

Introduction .. 143
The First Ray Angle .. 143
J. Barriolhet

The Relationship Between Functional Results and Radiographs
in One-Stage Posteromedial Release 147
H. Yamamoto and K. Furuya

Modified Posteromedial Release 151
H. Yamamoto, K. Furuya, and T. Muneta

Intraoperative X-Ray as a Standard for Accuracy of
Correction by Posteromedial Release of CTEV 156
D. Stevens and S. Meyer

Arthrography of Congenital Clubfoot 159
C. Kitada, Y. Takakura, and S. Tarnai

Discussion ... 166
Editor’s Comments .. 167

5. Vascular Aspects ... 169

Introduction .. 169

Noninvasive Vascular Studies in Clubfoot 169
C.L. Stanitski, W.T. Ward, and W. Grossman

A Comparison of Arteriographic and Doppler Techniques in
Evaluating the Abnormal Arterial Patterns in
Talipes Equinovarus ... 172
R.J. Crider, Jr., D.R. Hootnick, D.S. Packard, Jr.,
E.M. Levinsohn, R.A. Schwartz, H. Sodre, S. Bruschini, and
F. Miranda, Jr.

Anomalous Circulation in Clubfoot 178
George W. Simons

Discussion .. 184
Editor’s Comments .. 186

6. Nonsurgical Treatment 187

Introduction .. 187

A New Articulated Splint for Clubfeet 187
R. Seringe, P. Herlin, R. Kohler, D. Moulies, A. Tanguy, and
A. Zouari

Nonoperative Management of the Equinovarus Foot:
Long-Term Results .. 191
S. Zimbler

Discussion .. 193
Editor’s Comments .. 195
7. **Surgical Indications, Incisions, and Techniques** 196

 Introduction .. 196

 Indications for Limited Soft Tissue Release in Congenital Talipes Equinovarus .. 197
 H. Bensahel and Z. Czukonyi

 The Cincinnati Incision: An Approach for Extensive Dissection of the Foot and Ankle .. 198
 A.H. Crawford

 The Cincinnati Approach in Clubfeet 201
 H. Sodre, S. Bruschini, C. Nery, and J. Mizusaki

 A Comparative Result of Posteromedial Release Versus Posteromedial and Lateral Release for Idiopathic Talipes Equinovarus Using the Cincinnati Incision .. 208
 K.N. Kuo

 Medial Rotation of the Talus and Complete Calcaneocuboid Release—Its Effect on the Surgical Result in Idiopathic Clubfoot .. 209
 P. Howard and L. Dias

 Surgical Release and Reduction of Congenital Talipes Equinovarus .. 216
 R.M. Barnett, Sr.

 Long-Term Review of Juvenile Clubfoot Correction by Posteromedial Release: Clinical and Radiological Results 223
 K. Klaue and G. Filipe

 Discussion .. 229

 Editor’s Comments .. 231

8. **Wound Healing/Postoperative Care/Calcaneocuboid Subluxation** 234

 Introduction .. 234

 The Use of Tissue Expanders in Clubfoot Surgery 235
 A.D. Grant, D. Atar, W.B. Lehman, and A.M. Strongwater

 Partial Wound Closure Following Clubfoot Surgery 241
 A.L. Breed

 The Role of the Calcaneocuboid Joint in Clubfeet 245
 M.M. Malan

 Technique of Plantar Release and Calcaneocuboid Joint Release in Clubfoot Surgery .. 246
 N.C. Carroll

 Calcaneocuboid Joint Deformity in Talipes Equinovarus 253
 J.G. Thometz and George W. Simons

 Discussion .. 261

 Editor’s Comments .. 263
 Introduction ... 265
 Tibialis Anterior Lengthening in Clubfeet 265
 M. M. Malan
 Plantar Flexor Sheath Resection 266
 Douglas McKay
 Medial/Lateral Column Separation (Third Street Operation) for Dorsal Talonavicular Subluxation 268
 R. M. Barnett, Sr.
 Discussion .. 271
 Editor's Comments .. 273

 Introduction ... 275
 Gradual Midfoot Distraction for the Treatment of Severe Adductus Deformity in Children with Clubfeet After Multiple Prior Operations .. 276
 H. Watts
 Controlled Differential Distraction for Correction of Complex Congenital Talipes Equinovarus 282
 B. J. Joshi, N. S. Laud, A. Kaushik, H. Patankar, and S. Warrier
 Correction of Clubfoot Deformity Without Osteotomy by the Use of the Ilizarov Method 288
 F. Grill
 The Ilizarov External Fixator in Severe Foot Deformities: Preliminary Results .. 293
 M. A. Cantin, F. Fassier, B. Morin, K. Brown, and M. Rosman
 Complex Foot Deformity Correction Using the Ilizarov Circular External Fixator with Distraction but Without Osteotomy .. 297
 D. Paley
 Discussion .. 318
 Editor's Comments .. 320

11. New Procedures: Osteotomies 322
 Introduction ... 322
 Complex Foot Deformity Correction Using the Ilizarov Circular External Fixator with Osteotomies 322
 D. Paley
 The Results of Talar Neck Osteotomy in Resistant Congenital Clubfoot .. 351
 S. Ozeki, K. Yasuda, H. Iisaka, K. Kaneda, J. Monji, and S. Matsuno
Contents

12. Surgical Complications: Valgus/Calcaneus/Cavus/Dorsal Bunion .. 370

Introduction .. 370

Causes and Prevention of Tourniquet Lesions in Congenital Talipes Equinovarus Surgery 371

G. Ulrich Exner

Correction of the Overcorrected Clubfoot 374

Douglas McKay

The Cavus Component in Congenital Talipes Equinovarus 376

S.S. Coleman

The Akron Midtarsal Dome Osteotomy in the Treatment of Rigid Pes Cavus .. 377

B.K. Weiner and D.S. Weiner

“Reverse Jones” Procedure for Dorsal Bunion Following Clubfoot Surgery .. 384

K.N. Kuo

Discussion ... 387

Editor’s Comments ... 389

13. Surgical Complications: Adduction/Supination 390

Introduction .. 391

Anteromedial Soft Tissue Release for Persistent Adduction and Supination in Congenital Talipes Equinovarus .. 391

M.J. Abberton

Tarsometatarsal Mobilization Combined with Anterior Tibialis Transfer: A Salvage Procedure for Residual Clubfoot Deformity .. 396

M.J. Smith and D.S. Weiner

Opening-Wedge First Cuneiform Osteotomy (Usually with 2nd Through 4th Metatarsal Osteotomies) for Resistant Metatarsus Adductus Following Clubfoot Release 404

T.F. Kling, Jr., M.J. Conklin, and T.L. Schmidt

Combined Lateral Column Shortening and Medial Column Lengthening in the Treatment of Severe Forefoot Adductus ... 412

P.L. Schoenecker, D.J. Anderson, V.P. Blair III, and A.M. Capelli-Anderson

Treatment of Residual Clubfoot Deformity—The “Bean-Shaped” Foot—By Opening-Wedge Cuneiform Osteotomy and
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.</td>
<td>Surgical Complications: Ischemia/Necrosis/Effects of Surgery/Analysis of Failures</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>Compartment Syndrome in the Clubfoot</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>George W. Simons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Three Cases of Necrosis Following Clubfoot Surgery: A Proposed Vascular Etiology</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>D.R. Hootnick, D.S. Packard, Jr., E.M. Levinsohn, and A.R. Wladis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effects of Soft Tissue Release on the Development of the Tarsal Bones in Clubfeet</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>G. Szabo, J. Kranicz, and A. Bellyei</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of Unfavorable Late Results After Early Posteromedial Release in Clubfeet</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>G. Szabo and J. Kranicz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reasons for Failure with Posteromedial Release</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>V. Turco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>Editor's Comments</td>
<td>460</td>
</tr>
<tr>
<td>15.</td>
<td>Comparative Evaluation of Surgical Techniques</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>Comparative Evaluation of Two Surgical Techniques with and Without Subtalar Release</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>R. Seringe and L. Miladi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison of Older with Newer Surgical Techniques for Talipes Equinovarus</td>
<td>468</td>
</tr>
<tr>
<td></td>
<td>A. Dimeglio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clubfoot: Experience at the University of South Alabama Medical Center</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>Evaluation of Surgical Treatment in Resistant Clubfoot: A Comparison of the Turco, Carroll, and Cincinnati Approaches</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>S. Porat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparative Review of Surgical Treatment of the Idiopathic Clubfoot by Three Different Procedures</td>
<td>488</td>
</tr>
<tr>
<td></td>
<td>J.P. Magone, M. Torch, R. Clark, and J. Kean</td>
<td></td>
</tr>
</tbody>
</table>
Discussion ... 501
Editor's Comments ... 503

16. Neglected Clubfeet/Revision Surgery 505
Introduction .. 505
Management of Neglected Clubfeet 505
S. Pandey, A.K. Pandey, and N. Jha
Revision Surgery in Clubfeet .. 506
W.B. Lehman, D. Atar, A.D. Grant, and A.M. Strongwater
Clubfoot Revision Surgery ... 516
K.N. Kuo, S. Andrews, and J.P. Lubicky
Discussion ... 518
Editor's Comments ... 520

Summary of the First International Congress on Clubfeet . 521
S.S. Coleman

17. Additional Papers ... 524
Introduction .. 524
Preparing the Findings of the First International Congress on
Clubfeet for Computer-Assisted Decision-Making 525
W.M. Fahmy and H. Fahmy
A Method for the Treatment of Congenital Clubfeet in Infants ... 536
M. Kinoshita, T. Onomura, and R. Okuda
Rationale for Planning the Initial Treatment of Clubfoot .. 542
A.T. Redon and R.R. Mendoza
Persistent and Relapsed Internal Rotation of the Foot After
Soft Tissue Release ... 546
M.J. Abberton
Follow-Up Study of a Method of Management of Congenital
Talipes Equinovarus Deformities with Easily Available Surgical
Facilities in Developing Countries 549
A. Sengupta and P. Gupta
Early Treatment of Severe Idiopathic Clubfeet 553
T. Hitachi
Editor's Comments ... 568

Index to Discussion and Editor’s Comments Sections 571

Subject Index ... 579
Introduction

The first International Congress on Clubfeet, held on September 6 and 7, 1990, at Children's Hospital of Wisconsin, Milwaukee, Wisconsin, represented the culmination of 20 years of progress in the surgical correction of congenital talipes equinovarus (CTEV).

In 1970, one of the key issues on the forefront of the study of clubfeet was George Lloyd-Roberts' concept of the "horizontal breech." This concept held that the talus was externally rotated in the ankle mortise around the vertical axis. He believed this occurred as the result of inadequate surgery or walking on an incompletely corrected clubfoot. Posterior position of the fibula with respect to the tibia on the lateral radiograph was thus explained by Lloyd-Roberts' concept. Working at the Hospital for Sick Children in London, Lloyd-Roberts influenced many surgeons, including myself, who were trying to improve methods of treatment.

In 1971, I joined M.O. Tachdjian at Chicago Children's Memorial Hospital. He was very encouraging and enthusiastic about exploring new ideas and techniques. Concluding that Lloyd-Roberts' concept of talar position was not supported by our own studies, and that the talus is normally aligned in the ankle mortise of the typical clubfoot, Tachdjian invited several of Europe's leading pediatric orthopedic surgeons to Chicago as visiting professors to discuss clubfeet and other pediatric orthopedic problems in great detail. These meetings were highly informative, especially in regard to our further understanding of clubfeet in general and Lloyd-Roberts' concepts in particular.

In 1973, Tachdjian organized the first of his now famous Pediatric Orthopedic International Seminars (POIS). Although that first meeting was well attended, it gave only a small indication of how successful these seminars were to become. Lloyd-Roberts joined the second POIS meeting as a member of the faculty, a task he added to his busy annual schedule until his untimely death in 1988.

Meanwhile, Goldner was developing the view that the talus was internally rotated in the mortise, both around an AP as well as a vertical axis. Goldner and Fitch subsequently described a "four-quadrant release" in which the soft tissue correction was directed at the ankle rather than the subtalar joint. Gould, also concurring with Goldner's approach, advocated the use of multiple incisions including the high-loop incision to avoid skin contractures.

Turco's technique, a one-stage posteromedial release with internal
fixation, had been published in 1971 and was developing a strong following throughout the world. Turco, like most orthopedists at that time, was of the opinion that the hindfoot deformity was a two-dimensional deformity, with the heel being in varus, but not rotated in the third plane (around a vertical axis). He therefore released three sides of the subtalar joint, leaving the lateral side intact. Thus, with his procedure the calcaneus rotated on the lateral capsule as though it were on a hinge. Although Turco's procedure provided significant improvement over earlier multistage approaches, in many cases it failed to produce complete correction.

Early in 1972, I attempted to address these failures by operating on the lateral side of the foot, releasing the lateral calcaneocuboid joint, the anterior portion of the subtalar joint, and the lateral talonavicular joint. This led to a “progressive approach” or stepwise series of procedures with the use of intraoperative radiographs to determine when satisfactory correction was achieved. The following year (1973), Lichtblau published his technique for excision of the anterolateral aspect of the calcaneus. This was part of a simultaneous medial and lateral soft tissue release performed through two incisions.

In 1975, Seringe (Paris) described, as the main residual deformity following the conventional posteromedial release, adduction of the calcaneal pedal block [or calcaneal forefoot (CFF) block]. As a remedy for this, Seringe described a technique of soft tissue release that consisted of posterolateral, anteromedial, and talocalcaneal releases; however, they subsequently concluded that he could accomplish correction without subtalar release.

Like Lloyd-Roberts, Carroll et al. also believed that the talus was externally rotated in the ankle mortise (around a vertical axis); however, he believed that this position of the talus was present at birth. They described internal rotation of the talus as a part of their extensive soft tissue release. In 1974, Lloyd-Roberts later described medial rotation osteotomy of the distal tibia with external rotation of the foot (by a second-stage posteromedial release (PMR) or Evans’ procedure) in older cases.

Meanwhile, I also believed that calcaneal rotation was fundamental to the clubfoot, but visualized this rotation as occurring around an axis located at the posterior aspect of the talus, rather than centrally in the area of the interosseous talocalcaneal ligament.

In 1979, McKay introduced his concept of calcaneal rotation beneath the talus. He recognized the importance of releasing the lateral subtalar joint completely in order to achieve calcaneal rotation around the vertical axis as well as achieving eversion of the calcaneus to correct varus. He envisioned that the lateral rotation of the anterior calcaneus required simultaneous medial rotation of the posterior calcaneus. This could be achieved by moving the posterior calcaneus away from the fibula (in a medial direction) and fixing the calcaneus to the talus in this position by inserting Kirschner wires through the talonavicular and talocalcaneal joints.

In North America, McKay is credited with being the first to describe calcaneal rotation beneath the talus, although it appears that Bosch of Vienna published this finding in several papers between 1953 and 1964. Bosch, however, did not describe a surgical approach to correct this pathologic anatomy. Grill, who succeeded Bosch in Vienna, must be given credit for making Bosch’s work generally known. However, the first published article on calcaneal rotation appears to have been one by Par-
ker and Shattock in 1884. These earlier publications, however, do not detract from McKay's contribution both to the conceptual understanding and surgical treatment of calcaneal rotation.

At the 1979 POIS, John Roberts of the Children's Hospital in New Orleans asked McKay and me to join with him in a three-center evaluation of our respective techniques and their underlying theoretical models. At the end of this study, Roberts, McKay, and I agreed that McKay's concept of calcaneal rotation was correct. Moreover, we agreed that McKay's idea of releasing the entire lateral side of the subtalar joint was valid and produced better results than releasing only the anterior part of the lateral subtalar joint, as I had been doing. These findings were reported at the annual meeting of the Pediatric Orthopedic Society (POS) in 1980. Subsequently, McKay's three-part paper on his procedure and theory appeared in 1982 and 1983. It was McKay's lateral release that ultimately led the way to the development of improved, yet more extensive, soft tissue releases in North America in the 1980s, e.g., Barnett's modification of the complete subtalar release (CSTR) (see Chapter 9, page 268) and calcaneocuboid joint release.

These concepts of Goldner, Turco, Lloyd-Roberts and Carroll, and McKay provided the basis for considerable controversy during the ensuing decade, as each of these surgeons described a different operative procedure to correct the deformities as he envisioned them. Unfortunately, no accurate method existed that could irrefutably substantiate the validity of one method over the other.

Turco's procedure was based on pathoanatomic concepts that were generally accepted at that time. It provided such great improvement over previous techniques that it became widely accepted. Although it is probably still the most widely used technique throughout the world, its use in this country has gradually decreased as the other techniques have assumed greater popularity, especially that of McKay.

Tachdjian's POIS seminars and other meetings provided a forum for discussion of new surgical procedures and an important venue where pediatric orthopedists from around the world could exchange ideas and make lasting friendships. Many important ideas were conceived as a result of the annual POIS meetings. During this time, I attempted to develop a standardized method for the radiographic evaluation of clubfeet, a method that could be used to diagnose deformities, to affirm correction intraoperatively, and to evaluate surgical results retrospectively (1978). My results, as determined radiographically by the standardized method, revealed that the "progressive approach" did not eliminate incomplete corrections and that a more extensive procedure was needed.

At this time, most clubfoot surgeons were using a single medial incision. In 1980, Alvin Crawford, who had just been appointed Chief of Pediatric Orthopedic Surgery at the Cincinnati Children's Hospital, began to experiment with an alternative incision he had learned from Giannestras. Crawford extended Giannestras' incision further forward in order to visualize all the structures affected in the clubfoot. Having been told about this incision by Crawford, in 1981, I started using it and never returned to the old two-incision technique.

Although some surgeons expressed concern that the Cincinnati incision would not allow adequate Achilles lengthening, the incision proved very satisfactory if its distal arms were extended forward both medially and laterally so that the skin flap could be dissected as far proximally as required to achieve adequate lengthening of the Achilles tendon. The main
advantage of the Cincinnati incision, in the opinion of those who use it, is that it provides exceptional exposure for all areas requiring release, in the hindfoot and midfoot as well as in the forefoot (the incision can be extended as far forward as necessary). In addition, this incision affords a better view of the ankle and subtalar pathology than other incisions and it gives superior cosmetic results. My limited, but favorable, experience with the Cincinnati incision was reported at the annual meeting of the Pediatric Orthopedic Society of North America (POSNA) in 1982 and shortly thereafter, Crawford et al. published their classic paper on the Cincinnati approach to the clubfoot.

By this time, it was clear that the old techniques of “analytical radiography” and the “progressive approach” were superceded by the concept of “calcaneal rotation,” the development of the Cincinnati incision, the CSTR, and similar extensive soft tissue procedures. The clinical evidence began to mount, however, that the CSTR, like its predecessors, had limitations. Many of the earlier feet treated by CSTR were overcorrected into valgus. The calcaneus in these feet was either rotated or translated into valgus position, and I, like a number of other surgeons, was unable to correctly interpret the intraoperative radiographs. After performing a retrospective study of the films of many appropriately corrected and overcorrected clubfeet, it was discovered that the chief reason for overcorrection was the placement of the navicular too far laterally on the talar head. With this placement, the medial side of the talar head and the medial surface of the navicular were flush or at the same level. After placing the navicular in different positions, it was determined that the navicular had to be placed in a slightly protruding position, medially. At the same time, it became clear that there should be no lateral protrusion or step-off at the talonavicular joint. These findings were confirmed in a series of intraoperative posteroanterior (PA) and postoperative anteroposterior (AP) radiographs, despite limited or absent ossification in the navicular, using special radiographic measurements that were subsequently substantiated once ossification of the navicular occurred.

Similar problems arose in the dorsal-plantar relationship at the talonavicular joint, whereas the navicular frequently subluxated superiorly. Here again, it was determined that when the dorsal surface of the navicular and the dorsal surface of the talar head are at the same level (i.e., no dorsal step-off), and the long axis of the talus passes through the base of the first metatarsal on the lateral radiograph, the normal talonavicular position exists (i.e., dorsal talonavicular subluxation is not present).

Although critics were quick to blame overcorrection on excessive release of soft tissues, particularly the interosseus talocalcaneal ligament, the studies cited here demonstrated that the majority of overcorrected feet were overcorrected at the time of surgery, being internally fixed in the overcorrected position.

A set of clinical criteria for positioning the navicular and the use of intraoperative radiographs were recommended as solutions to this problem. Unfortunately, many people have found the technique of taking intraoperative radiographs too demanding and the radiographs difficult to interpret. Papers on preliminary experience with the CSTR specifically discussing the causes and prevention of overcorrection appeared in 1985 and 1987.

A second cause of overcorrection was failure to recognize and correct significant calcaneocuboid subluxation. As the 1980s drew to a close, de-
Formity at the calcaneocuboid level began to attract considerable attention. Several of the papers in this volume discuss this newly understood deformation.

This was the apparent state of the art at the beginning of 1990, and yet, in my travels, I have learned of additional work being done on various aspects of the clubfoot problem. Some of this work could be described as basic research; some consists of clinical studies; some is highly theoretical. It was apparent that this work should be synthesized and reported.

John S. Gould, Chairman of the Department of Orthopaedics at the Medical College of Wisconsin, and I worked with the leaders of SICOT (Société Internationale de Chirurgie Orthopédique et de Traumatologie) to organize a congress on clubfeet that would be scheduled to precede the Montreal meeting of SICOT in September, 1990. Sir Dennis Patterson, SICOT president, and Maurice Duhaime, vice president of the SICOT congress, were very helpful in the planning that led to this first International Congress on Clubfeet (ICC).

The initial call for papers for the congress included a list of topics on which the organizers believed further research was needed. Two limitations were placed on papers: they had to be presented and written in English, and they could not be devoted to presentation of surgical results. Although surgical results are ultimately of the greatest importance to all surgeons, the organizers felt that in the absence of a well-documented, generally accepted set of criteria for the evaluation of CTEV, either preoperatively or postoperatively, it would be futile to attempt comparisons of results. In fact, recent symposia have shown that attempts to compare one study with another can be grossly misleading. A few papers on surgical results were eventually accepted, however, because of the light they shed on other issues.

It is now recognized that one of our major endeavors for the next few years must be to establish a common set of criteria for the evaluation of the unoperated CTEV and for the results of the various conservative and surgical procedures still in use.

The organizers hoped for a submission of 25 to 30 strong papers. Over 100 abstracts were received, and the meeting had to be extended from one day to a day and a half. Despite the extension, many fine papers had to be turned away; a further extension would have caused conflict with the SICOT and POSNA meetings in Montreal.

A total of 84 papers presented at the International Congress on Clubfeet appear in this monograph. These were presented by 65* surgeons from 30 nations. Although many of the papers were presented by surgeons from the United States, the number of papers and participants from other countries made this a truly international congress. Most of the papers presented here have been rewritten and embellished to provide more scientific documentation than the versions that were presented at the meeting, with its limits on time. Most of the papers fall into two general categories: scientific presentations on clinical and basic research, and anecdotal or theoretical papers. The latter type was judged to be highly important, given the rapid advances being made in the study and treatment of clubfeet. Although some of the procedures suggested in this volume are little more than concepts at this time, some of them may eventually represent major advances in the field of clubfoot surgery.

*This number does not include the authors whose papers are included in Chapter 17 but who were not presenters at the congress.
It is with great pleasure that the editor presents this compilation of papers in the form of a monograph on the first International Congress on Clubfeet.

Medical College of Wisconsin George W. Simons, M.D.

References

I would like to acknowledge the generosity of the following individuals who helped to organize the congress on which this monograph is based:

Robert M. Barnett, Sr., M.D.
Minneapolis, Minnesota

S.S. Coleman, M.D.
Salt Lake City, Utah

Paul Griffin, M.D.
Charleston, South Carolina

W.B. Lehman, M.D.
New York, New York

M.O. Tachdjian, M.D.
Chicago, Illinois

Raymond C. Waisman, M.D.
Milwaukee, Wisconsin

I want to extend personal thanks to J.E. Handelsman, M.D., Long Island Jewish Medical Center, New Hyde Park, New York, for writing a special paper at my request on the understanding of muscle pathology. In addition, John Gould, M.D., Chairman, Department of Orthopaedics, Medical College of Wisconsin, has been extremely helpful in providing monetary support as well as an abundance of advice. Without his encouragement and generosity, neither the congress nor this monograph would have become a reality.

The daily support of my editorial assistant, Mr. Robert Henderson, was of paramount importance as was his help in preparation of the manuscript.
Contributors

M.J. Abberton, MCh (Orth), FRCS Ashfield, Spring Gardens Lane, Keighley, Yorkshire, England, BD20 6LH UK

A. Almeida, MD 901 S. Main St., Fall River, MA 02724, USA

D.J. Anderson, MD St. John’s Mercy Medical Center, 621 South New Ballas Road, Suite 329, St. Louis, MO 63141, USA

L.D. Anderson, MD 2451 Fillingim St., Mobile, AL 36617-2293, USA

S. Andrews, MD 60 East Delaware, Suite 1460, Chicago, IL 60611, USA

D. Atar, MD 14 Eucalyptus St., Omer 84965, Israel

R.M. Barnett, Sr., MD Shriners’ Hospital for Crippled Children, Minneapolis, MN 55414, USA

J.L. Barriolhet, MD Los Diamelos 2914, Santiago 9, Chile

A. Bellyei, MD Department of Orthopaedics, University Medical School of Pecs, Pecs, Ifjusag u. 13, 7643, Hungary

H. Bensahel, MD Hôpital Robert Debre, 48 boulevard Serurier, 75019 Paris, France

V.P. Blair III, MD 4989 Barnes Hospital Plaza, St. Louis, MO 63110, USA

L. Braga, MD Hospital das Doencas do Aparelho Locomotor, Av. W/3 Sul-Quadra 501-SMHS, Brazil

A.L. Breed, MD 600 Highland Avenue, Madison, WI 53792, USA

K. Brown, MD 2300 Tupper St., Montreal PQ H3H 1P3, Canada

S. Bruschini, Sergio, MD Rua Dos Otonis, 709 Sao Paulo, Brazil 04025
A. Campos da Paz, Jr., MD Hospital das Doencas do Aparelho Locomotor, Av. W/3 Sul-Quadra 501-SMHS, Brasilia–DF, Brazil

M.A. Cantin, MD 264 Waverly Road, Toronto, Ontario, M4L 3T6, Canada

A.M. Capelli-Anderson, MD St. Louis Shriners’ Hospital, 2001 S. Lindberg, St. Louis, MO 63131, USA

N.C. Carroll, MD, FRCSC Division of Orthopaedic Surgery, The Children’s Memorial Hospital, Chicago, IL 60614, USA

A. Catterall, MD 22 Hill Road, London, England NWB 909, U.K.

R. Clark, MD 545 18th Street, Columbus, OH 43205-2654, USA

S.S. Coleman, MD Division of Orthopaedic Surgery, The University of Utah School of Medicine, Salt Lake City, UT 84132, USA

M.J. Conklin, MD 17 Terrace Court, Kensington, MD 20895-2842, USA

A.H. Crawford, MD Division of Children’s Orthopaedics, Children’s Hospital Medical Center, Cincinnati, OH 45229, USA

R.J. Crider, Jr., MD Shriners’ Hospital and Kaiser Permanente, San Francisco, CA 94920, USA

R.J. Cummings, MD Nemours Children’s Clinic, Jacksonville, FL 32247, USA

Z. Czukonyi, MD Hôpital Robert Debre, 48 boulevard Serurier, 75019 Paris, France

L. Dias, MD Suite 1208, 680 N. Lake Shore Drive, Chicago, IL 60611, USA

A. Dimeglio, MD Faculté de Médecine—Montpellier, Institut Saint-Pierre, 34250 Palavas-les-Flots, France

S. Dorfmuller-Kuchlin, MD Oskar-Heine-Heim Frei University, Cay-aulee 229, D-1000, Berlin 33 (Dahlem), Germany

D. Downey, MD Western Surgery Center, 850 E. 1200 N. St. Logan, Utah 84321, USA

J. Drennan, MD Department of Orthopaedics, University of New Mexico School of Medicine, Carrie Tingley Hospital, Albuquerque, NM 87102, USA

J. Drogt, MD 293 West 7 St., St. Paul, MN 55102, USA
A. Eisenshenk, MD Oskar-Heine-Heim Frei University, Clayallee 229, D-1000, Berlin 33 (Dahlem), Germany

G. Ulrich Exner, MD BALGRIST, Orthopädische Universitätsklinik, Schweizerisches Paraplegikerzentrum Forschstrasse 340, CH 8008 Zurich, Switzerland

H. Fahmy, MD 13 El Messaha Stra. Dokki—Giza—Egypt

W.M. Fahmy, FRCS 13 El Messaha Stra. Dokki—Giza—Egypt

F. Fassier, MD 32 Boulevard St., Joseph West Montreal, Quebec H2T 2P3, Canada

G. Filipe, MD Pediatric Clinic, Faculty of Medicine and Surgery, Universita degli Studi Trieste, Via dell Istria 65, Trieste, Italy

M. Fillingier, MD RR1, Box 246, 15 College Hill, Lebanon, NH 03766, USA

R.D. Fitch, MD Duke University Medical Center, Durham, NC 27710, USA

K. Furuya, MD Department of Orthopaedics, Tokyo Medical and Dental University, 5-45 Yushima, 1-Chome Bunkyo-ku, Tokyo 113, Japan

J. Garcia, MD Department of Radiology, University of New Mexico, 2211 Lomas NE, Albuquerque, NM 87106, USA

R. Glasser, MD Schneider Children’s Hospital, Long Island Jewish Medical Center, New Hyde Park, NY 11042, USA

J.L. Goldner, MD Department of Surgery, Duke University Medical School, Durham, NC 27710, USA

G. Gosztonyi, MD Oskar-Heine-Heim Frei University, Clayallee 229, D-1000, Berlin 33 (Dahlem), Germany

A.D. Grant, MD Children’s Orthopaedic and Arthritis Institute, Hospital for Joint Diseases/Orthopaedic Institute, New York, NY 10003, USA

F. Grill, MD Pediatric Orthopaedic Department, Orthopädische Spital Speising—Vienna, Speisingerstrasse 109, A—1134, Vienna, Austria

W. Grossman, MD Children’s Hospital of Pittsburg, 1 Children’s Place, Pittsburg, PA 15213, USA

G. Gupta, MD Institute of Child Health, 3 Haraprasad Sastri Sarani, 28 SD Blec B, New Alipore, Calcutta 700053, India

S. Hamada, MD 301 North Prairie Avenue, Inglewood, CA 90301-4507, USA
J.E. Handelsman, MD, FRCS Schneider Children’s Hospital, Long Island Jewish Medical Center, New Hyde Park, NY 11042, USA

R.M. Hay, MD 6550 Mapleridge, Houston, TX 77082, USA

D.E. Herbert, MD Department of Orthopaedics, University of South Alabama, Mobile, AL 36617, USA

P. Herlin, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75674 Paris CEDEX 14, France

K. Hiroshima, MD Department of Orthopaedic Surgery, Osaka University Medical School, 1-1-50, Fukushima, Fukushima-ku, Japan

T. Hitachi, MD Amagi Yugashima, Tagata, Shizuoka-ken, Osaka 553, Japan

P. Howard, MD 2605 Fox Run Drive, Springfield, IL 62704, USA

D.R. Hootnick, MD University of Orthopedic Sports Medicine, Syracuse, NY 13210, USA

H. Isaka, MD Department of Orthopaedic Surgery, Hakkaido University School of Medicine, N15 W7 Sapporo 060, Japan

N. Jha, MD Department of Orthopaedic Surgery, RJSIOR—Ram Janam Sulakshana, Institute of Orthopedics, Trauma, Rehabilitation and Research, Rameshwaram, Ranchi 834008, India

J.E. Johansen, MD 6363 France Avenue So., Physicians Building, Edina, MN 55435, USA

B.J. Joshi, MD Laud Clinic, 180—Hindu Colony, Khareghat Road, Dadar (W), Bombay 400014, India

K. Kaneda, MD Department of Orthopaedic Surgery, Hakkaido University School of Medicine, N15 W7 Sapporo 060, Japan

J. Kean, MD 255 Taylor Station Road, Columbus, Ohio 43213, USA

D. Kerns, MD State University of New York, Health Science Center, 750 East Adams Street, Syracuse, New York 13210, USA

M. Kinoshita, MD Osaka Medical College, Department of Orthopedic Surgery, 2-7, Daigaku-cho, Takatsuki-shi, Osaka 569, Japan

C. Kitada, MD Department of Orthopaedic Surgery, Saiseikai Chuhwa Hospital and Nara Medical University, Nara, Japan

K. Klaue, MD Klinik und Poliklinik für Orthopädische Chirurgie, Universität Bern, Switzerland

T.F. Kling, Jr., MD Department of Orthopaedic Surgery, James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, IN 46202, USA
Contributors

R. Kohler, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75675 Paris CEDEX 14, France

A. Kojima, MD Department of Orthopaedic Surgery, Osaka University Medical School, 1-1-50, Fukushima, Fukushima-ku, Osaka, Japan

J. Kranicz, MD Department of Orthopedics, University Medical School of Pecs, Ifjusag St. 13, Pecs H-7643, Hungary

K.N. Kuo, MD Department of Orthopaedic Surgery, Rush-Presbyterian-St. Luke’s Medical Center, Chicago, IL 60612, USA

N.S. Laud, MD Laud Clinic, 180—Hindu Colony, Khareghat Rd., Dadar (W), Bombay 400014, India

W.B. Lehman, MD Hospital for Joint Diseases/Orthopaedic Institute, New York, NY 10003, USA

M. Lenhart, MD Walter Reed Army Medical Center, Washington, D.C., 20307-5001, USA

S. Levin, MD 5021 Seminary Rd., Alexandria, VA 22311, USA

E.M. Levinsohn, MD University Hospital, 750 E. Adams Rd., Syracuse, NY 13210, USA

A. Lourenco, MD 401 Miracle Mile, Coral Gables, FL 33134, USA

W.W. Lovell, MD Nemours Children’s Clinic, Jacksonville, FL 32247, USA

J.P. Lubicky, MD 2211 N. Oak Park Ave., Chicago, IL 60635, USA

A.A.C. Maghilaes, MD Department of Orthopaedics, Escola Paulista de Medicina, Rue Napoleao de Barros, 715—cep 04024, Sao Paulo SP

J.P. Magone, MD Children’s Hospital, Columbus, OH 43205, USA

M.M. Malan, MD Medical University of South Africa, Vanderbijlpark 1900, Republic of South Africa

R.F. Martin, MD, FRCSC Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario LBN 325, Canada

S. Matsuno, MD 17830 Merridy St., Northridge, CA 91325, USA

J.M. Mazur, MD P.O. Box 5720, Jacksonville, FL 32247, USA

W.P. McCluskey, MD 9020 Latimer Road, Jacksonville, FL 32257-5218, USA

A. McComas, MD McMaster University, Hamilton, Ontario, LBN 325 Canada
K.A. McHale, MD LTC/MC, Pediatric Orthopedics, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA

Douglas McKay, MD P.O. Drawer 670, Ville Platte, LA 70586, USA

H. Mellerowicz, MD Oskar-Heine-Heim Frei University, Clayalee 229, D-1000, Berlin 33 (Dahlem), Germany

R.R. Mendoza, MD Pediatric Orthopaedic Department, Military Central Hospital, Apartado postal 35-576, Lomas de Sotelo, Mexico, DF 11649, Mexico

S. Merello, MD Instituto di Clinica Ortopedica, University of Malan, via Bignami 1, Milan 20126, Italy

F.N. Meyer, MD 2451 Fillingim St., Mobile, AL 36617, USA

S. Meyer, MD 9843 Gross Point Rd., Skokie, IL 60076, USA

L. Miladi, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75675 Paris CEDEX 14, France

G. Milo-Manson, MD Sick Children’s Hospital, Toronto, Ontario M5L 6X8, Canada

F. Miranda, MD 701 Neward Ave., Elizabeth, NJ 07208, USA

M. Mitta, MD Osaka Koseinenkin Hopistal, 4-2-78 Fukushima-ku, Osaka 553, Japan

J. Mizusaki, MD Department of Orthopaedics, Escola Paulista de Medicina, Rue Napoleao de Barros, 715—cep 04024, Sao Paulo, Brazil

A. Momura, MD Hospital das Doencas do Aparelho Locomotor, Av. W/3 Sul-Quadra 501-SMHS, Brazil

J. Monji, MD Department of Orthopaedic Surgery, Hakkaido University School of Medicine, N15 W7 Sapporo 060 Japan

B. Morin, MD 264 Waverly Rd., Toronto, Ontario, M4L 3T6, Canada

F. Motta, MD Instituto di Clinica Ortopédica, University of Malan, Milan 20126, Italy

D. Moulies, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75674 Paris CEDEX 14, France

T. Muneta, MD Department of Orthopaedics, Tokyo Medical and Dental University, 5-45, Yushima, 1-Chome, Bunkyo-ku Tokyo 113 Japan

H. Nakahara, MD Department of Orthopaedic Surgery, Osaka University Medical School, 1-1-50, Fukushima, Fukushima, Japan
Contributors

C. Nery, MD Department of Orthopaedics, Escola Paulista de Medicina, Rue Napoleao de Barros, 715—cep 04024, Sao Paulo SP

P. Nimityongskul, MD Department of Orthopaedics, University of South Alabama, Mobile, AL 36617, USA

I. Nonaka, MD Department of Orthopaedic Surgery, Osaka University Medical School, 1-1-50, Fukushima, Fukushima-ku, Japan

R. Okuda, MD Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigaku-cho, Takatsuki-shi, Osaka 569 Japan

K. Ono, MD Department of Orthopaedic Surgery, Osaka University Medical School, 1-1-50, Fukushima, Fukushima-ku, Osaka, Japan

T. Onomura, MD Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigaku-cho, Takatsuki-shi, Osaka 569 Japan

S. Ozeki, MD Department of Orthopaedic Surgery, Hokkaido University School of Medicine, N15 W7 Sapporo 060, Japan

D.S. Packard, Jr., PhD Department of Anatomy and Cell Biology, State University of New York, Health Science Center, Syracuse, N.Y. 13210

D. Paley, MD FSCSC James Lawrence Kernan Children’s Hospital, Baltimore, MD 21207, USA

A.K. Pandey, MD 8045 Surrey Pl., Jamaica, NY 11432, USA

S. Pandey, FICS, FACS Department of Orthopaedic Surgery, RJSIOR—Ram Janam Sulakshana Institute of Orthopedics, Trauma, Rehabilitation and Research, Rameshwaram, Ranchi 834008, India

H. Patankal, MD Laud Clinic, 180—Hindu Colony, Khareghat Rd., Dadar (W), Bombay 400014, India

H. Peterson, MD Mayo Clinic, Rochester, MN 55905, USA

S. Porat, MD, Mch (Orth) Department of Orthopaedic Surgery, Hadasah University Hospital, Jerusalem il 91120, Israel

G.T. Rab, MD University of California–Davis Hospital, Sacramento, CA 95817, USA

A. Ramalho, Jr., MD Presidente da Fundacao das Pioneiras Socialis, Hospital das Doencas do, Aparelho Locomotor, Av., W/3 Sul-Quadra 501-SMHS, Brazil

J.B. Ray, MD 179 Louiselle St., Mobile, AL 36607-3575, USA

A.T. Redon, MD Pediatric Orthopaedic Department, Military Central Hospital, Apartado postal 35-576, Lomas de Sotelo, Mexico, DF 11649, Mexico
M. Rosman, MD St. Justin’s Hospital, Joseph Blvd., Montreal, Quebec H272P3, Canada

T. L. Schmidt, MD Children’s Mercy Hospital, Kansas City, MO 64108, USA

P. L. Schoenecker, MD Division of Orthopedic Surgery, Washington University Medical Center, St. Louis, MO 63110, USA

R. A. Schwartz, MD FACS State University of New York—Health Science Center, Syracuse, NY 13210, USA

A. Sengupta, FRCS Institute of Child Health, 3, Haraprasad Sastri Sarani, New Alipore, Calcutta 700053, India

R. Seringe, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75674 Paris 14, France

N. Shimizu, MD Osaka Koseinenkin Hospital, 4-2-78 Fukushima-ku, Osaka 553, Japan

George W. Simons, MD Department of Orthopaedic Surgery, MACC Fund Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA

M. J. Smith, MD 615 11th St. N, St. Petersburg, FL 33705, USA

H. Sodre, MD Department of Orthopaedics, Escola Paulista de Medicina, Av. Indianopolis, 1787, Sao Paulo SP 04063, Brazil

A. H. Souchot, MD Hôpital Robert Debre, 48 boulevard Serurier, 75019 Paris, France

H. Sodre, MD Department of Orthopaedics, Escola Paulista de Medicina, Rue Napoleao de Barros 715—cep 04024 Sao Paulo SP 04064, Brazil

M. Sparmann, MD Oskar-Heine-Heim Frei University, Clayallee 229, D-1000, Berlin 33 (Dahlem), Germany

C. L. Stanitski, MD Department of Orthopedic Surgery, Children’s Hospital of Michigan, Detroit, MI 48201, USA

J. G. Stark, MD 17 W. Exchange St., St. Paul, MN 55102, USA

D. Stevens, MD Shriner’s Hospital, Lexington, KY 40502, USA

A. M. Strongwater, MD 5257 Fieldston Rd., Bronx, NY 10471, USA

G. Szabo, MD Department of Orthopedics, University Medical School of Pecs, Pecs, Ifjusag u. 13, Hungary
M.O. Tachdjian, MD 676 St. Clair Street, Suite 22125, Chicago, IL 60611, USA

I. Taga, MD Department of Orthopaedic Surgery, Osaka University Medical School, 1-1-5 Fukushima, Fukushima-ku, Osaka, Japan

Y. Takakura, MD Department of Orthopaedic Surgery, Saiseikai Chuhwa Hospital and Nara Medical University, Nara, Japan

S. Tamai, MD Department of Orthopaedic Surgery, Saiseikai Chuhwa Hospital and Nara Medical University, Nara, Japan

A. Tanguy, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75674 Paris CEDEX 14, France

J.G. Thometz, MD Department of Orthopaedic Surgery, MACC Fund Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA

Martin A. Torch, MD Columbus Orthopaedic Surgery, Inc., 255 Taylor Station Road Columbus, OH 43213, USA

V. Turco, MD 1000 Asylum Avenue, Hartford, CT 06105, USA

W.T. Ward, MD 3705 5th Ave., Pittsburgh, PA 15213, USA

S. Warrier, MD Laud Clinic, 180—Hindu Colony, Khareghat Rd., Dadar (W), Bombay 400014, India

H. Watts, MD Shriner’s Hospital for Crippled Children, Los Angeles, CA 90020-1199, USA

B.K. Weiner, MD Akron City Hospital, 525 West Market St., Akron, OH 44309, USA

D.S. Weiner, MD Department of Orthopaedics, Children’s Hospital Medical Center of Akron, Akron, OH 44308, USA

A.R. Wladis, MD 15 Bovington Ln., Fayetteville, NY 13066, USA

H. Yamamoto, MD Department of Orthopaedics, Tokyo Medical and Dental University, 5-45, Yushima, 1-Chome, Bunkyo-ku Tokyo 113, Japan

K. Yasuda, MD 1100 9th Ave., Seattle, WA 98101, USA

S. Zimbler, MD P.O. Box 27, W. Newington, MA 02165, USA

A. Zouari, MD Hôpital Saint Vincent de Paul, 74 Avenue Denfert-Rochereau, 75674 Paris CEDEX 14 France
Definition of Terms and Abbreviations

For purposes of clarity, it is necessary to use some standard terminology to describe various elements of the foot. Many of these terms enjoy popular usage in the United States, whereas in Great Britain and other English-speaking countries other terms are used. The terms most commonly used in the United States are the ones that will be used in this monograph.

Throughout the text the term congenital talipes equinovarus (CTEV) will be used to signify the idiopathic clubfoot as opposed to other forms, such as neurologic, teratologic, functional, etc. In addition, abbreviations frequently used in this monograph will be indicated here.

Supination is defined as rotation around the longitudinal (anteroposterior) axis of the foot, with elevation of its medial border, and pronation is the opposite.

Adduction is defined as internal rotation of the foot around the vertical axis, bringing the forefoot closer to the midline of the body, and abduction is the opposite.

Dorsiflexion and plantar flexion of the ankle refer to the upward and downward rotation of the foot around a mediolateral axis passing through the talar body.

The term varus often has been applied to the forefoot to imply the presence of the combined deformities of adduction and supination. However, in this discussion, varus will be used to define pathologic degrees of inversion of the calcaneus beneath the talus.

Rotary movements of the hindfoot will be described as occurring around either the longitudinal (anteroposterior) axis, the vertical axis, or the mediolateral axis. The AP axis passes horizontally through the foot in the sagittal plane at the level of the midtalus. The vertical axis passes upward through the calcaneus, through the interosseous talocalcaneal ligament, through the talus, and up the tibia. The mediolateral axis passes through the foot in the coronal plane at the level at the malleoli.

The following terms are used in preference to those enclosed within the parentheses: ankle (crural), talus (astragalus), calcaneus (os calcis), and navicular (scaphoid).

The following abbreviations will also be used:

AP anteroposterior (dorsiplantar)
APTC angle anteroposterior talocalcaneal angle
Cal. Ost. calcaneal osteotomy
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC joint</td>
<td>calcaneocuboid joint</td>
</tr>
<tr>
<td>CC joint and TN joint</td>
<td>Chopart’s joint</td>
</tr>
<tr>
<td>CCR</td>
<td>calcaneocuboid release</td>
</tr>
<tr>
<td>CCS</td>
<td>calcaneocuboid subluxation</td>
</tr>
<tr>
<td>CSTR</td>
<td>complete subtalar release</td>
</tr>
<tr>
<td>Cub. Ost.</td>
<td>cuboid osteotomy</td>
</tr>
<tr>
<td>Cun. Ost.</td>
<td>cuneiform osteotomy</td>
</tr>
<tr>
<td>FFA</td>
<td>forefoot adduction</td>
</tr>
<tr>
<td>FFS</td>
<td>forefoot supination</td>
</tr>
<tr>
<td>HFV</td>
<td>hindfoot varus</td>
</tr>
<tr>
<td>IP joint</td>
<td>interphalangeal joint</td>
</tr>
<tr>
<td>Lat.</td>
<td>lateral</td>
</tr>
<tr>
<td>Lat. TC angle</td>
<td>lateral talocalcaneal angle</td>
</tr>
<tr>
<td>Med.</td>
<td>medial</td>
</tr>
<tr>
<td>M. Ost. (1–5)</td>
<td>metatarsal osteotomies—first through fifth</td>
</tr>
<tr>
<td>MTP (or MP) joint</td>
<td>metatarsophalangeal joints (Lisfranc’s joint)</td>
</tr>
<tr>
<td>Pl. Rel.</td>
<td>plantar release</td>
</tr>
<tr>
<td>PMLR</td>
<td>Posteromedial and lateral release (peritalar release)</td>
</tr>
<tr>
<td>PMR</td>
<td>posteromedial release</td>
</tr>
<tr>
<td>PR</td>
<td>posterior release</td>
</tr>
<tr>
<td>TAL</td>
<td>Achilles tendon lengthening</td>
</tr>
<tr>
<td>TMT joints</td>
<td>tarsometatarsal joints (Lisfranc’s joint)</td>
</tr>
<tr>
<td>TN joint</td>
<td>talonavicular joint</td>
</tr>
</tbody>
</table>