NAIVE SEMANTICS FOR NATURAL LANGUAGE UNDERSTANDING
THE KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE

NATURAL LANGUAGE PROCESSING
AND MACHINE TRANSLATION

Consulting Editor

Jaime Carbonell

Other books in the series:

EFFICIENT PARSING FOR NATURAL LANGUAGE: A FAST
ALGORITHM FOR PRACTICAL SYSTEMS,

A NATURAL LANGUAGE INTERFACE FOR COMPUTER
AIDED DESIGN,

INTEGRATED NATURAL LANGUAGE DIALOGUE:
A COMPUTATIONAL MODEL,
CONTENTS

Part I. Naive Semantics

1. Naive Semantics 3
 1.1. Using Naive Semantics to Interpret "The Programmer" 7
 1.2. Compositional Semantics 10
 1.3. The Classical Theory of Word Meaning 12
 1.4. Word Meanings as Concepts 18
 1.5. Other Decompositional Approaches 18
 1.6. Computational Approaches to Word Meaning 23
 1.7. Naive Semantics 28
 1.8. Basis of Naive Semantics in Cognitive Psychology .. 29
 1.9. Comparison of NS with Computational Models 36
 1.10. Limitations of NS 39
 1.11. Organization of the Book 43

2. Noun Representation 45
 2.1. The Ontological Schema 45
 2.2. Mathematical Properties of the Ontology 46
 2.3. Ontological Categories 49
 2.4. Nominal Terminal Nodes 52
 2.5. Construction of the Ontology 55
 2.6. Other Ontologies 56
 2.7. Generic Knowledge 58
 2.8. Word Senses 60
 2.9. Feature Types 61
 2.10. Conclusion 62

3. Kinds, Kind Terms and Cognitive Categories 65
 3.1. The Realist Basis of NS and Kind Terms 65
 3.2. Kind Types 69
 3.3. Kind Types as Metasorts 75
 3.4. Another Approach 76
 3.5. Summary 77
4. Verb Representation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Ontological Representation</td>
<td>79</td>
</tr>
<tr>
<td>4.2. Placing Verbs in the Main Ontology</td>
<td>80</td>
</tr>
<tr>
<td>4.3. Sub-Classification of the TEMPORAL/RELATIONAL Node</td>
<td>82</td>
</tr>
<tr>
<td>4.4. The Vendler Verb Classification</td>
<td>83</td>
</tr>
<tr>
<td>4.5. Psycholinguistic Categories</td>
<td>90</td>
</tr>
<tr>
<td>4.6. Cross-Classification</td>
<td>93</td>
</tr>
<tr>
<td>4.7. Parallel Ontologies</td>
<td>94</td>
</tr>
<tr>
<td>4.8. Non-Categorial Features</td>
<td>95</td>
</tr>
<tr>
<td>4.9. Generic Representation</td>
<td>95</td>
</tr>
<tr>
<td>4.10. Feature Types Associated with Relational Terms</td>
<td>98</td>
</tr>
<tr>
<td>4.11. Conclusion</td>
<td>101</td>
</tr>
</tbody>
</table>

5. The Functioning of the Kind Types System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Complete and Incomplete Knowledge</td>
<td>107</td>
</tr>
<tr>
<td>5.2. Queries to the System</td>
<td>109</td>
</tr>
<tr>
<td>Inspecting the Textual Database.</td>
<td>109</td>
</tr>
<tr>
<td>Inspecting the Ontology</td>
<td>110</td>
</tr>
<tr>
<td>Inspecting the Generic Database.</td>
<td>111</td>
</tr>
<tr>
<td>Inspecting Feature Types</td>
<td>113</td>
</tr>
<tr>
<td>5.3. Anaphors</td>
<td>117</td>
</tr>
<tr>
<td>5.4. PP Attachment</td>
<td>118</td>
</tr>
<tr>
<td>5.5. Word Sense Disambiguation</td>
<td>118</td>
</tr>
<tr>
<td>5.6. Discourse Reasoning</td>
<td>119</td>
</tr>
<tr>
<td>5.7. Kind Types Reasoning</td>
<td>120</td>
</tr>
<tr>
<td>5.8. Summary of Inference Mechanism</td>
<td>121</td>
</tr>
</tbody>
</table>

6. Prepositional Phrase Disambiguation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Semantically Implausible Syntactic Ambiguities</td>
<td>123</td>
</tr>
<tr>
<td>6.2. Using Commonsense Knowledge to Disambiguate</td>
<td>125</td>
</tr>
<tr>
<td>6.3. Commonsense Knowledge used in the Preference Strategy</td>
<td>128</td>
</tr>
<tr>
<td>Ontological Class of Object of the Preposition.</td>
<td>128</td>
</tr>
<tr>
<td>Ontological Class of The Direct Object.</td>
<td>129</td>
</tr>
<tr>
<td>Ontological Class of Verb.</td>
<td>129</td>
</tr>
<tr>
<td>Generic Information</td>
<td>130</td>
</tr>
<tr>
<td>Syntax</td>
<td>131</td>
</tr>
</tbody>
</table>
6.4. Success Rate of the Preference Strategy 132
6.5. Implementation ... 133
6.6. Other Approaches .. 135
6.7. Conclusion ... 138

7. Word Sense Disambiguation ... 141
7.1. Approaches to Word Sense Disambiguation 141
7.2. Local Combined Ambiguity Reduction 142
7.3. Test of Hypothesis .. 144
7.4. Noun Disambiguation .. 144
 Fixed and Frequent Phrases. 145
 Syntactic Tests. ... 146
 Commonsense Knowledge. 147
7.5. Verb Sense Disambiguation 151
 Frequent Phrases in Verb Disambiguation. 153
 Syntactic Tests in Verb Disambiguation. 153
 Commonsense in Verb Disambiguation. 154
7.6. Interaction of Ambiguous Verb and Noun 155
7.7. Feasibility of the Method 156
7.8. Syntactic and Lexical Ambiguity 157
7.9. Intersentential Reasoning 157
7.10. Disambiguation Rules ... 158
7.11. Efficiency and Timing 164
7.12. Problems for the Method 166
7.13. Other Approaches ... 167
7.14. Conclusion .. 169

8. Discourse Coherence ... 171
8.1. Background ... 171
 Coherence Relations. ... 172
 Discourse Segments. ... 174
 Genre-Relativity of Discourse Structure. 175
 The Commentary Genre. 177
 Compendium of Discourse Relations. 178
8.2. Modularity and Discourse 184
 Modelling the Recipient. 184
 Discourse Events. ... 185
 Coherence as Compositional Semantics? 188
Preface

This book introduces a theory, Naive Semantics (NS), a theory of the knowledge underlying natural language understanding. The basic assumption of NS is that knowing what a word means is not very different from knowing anything else, so that there is no difference in form of cognitive representation between lexical semantics and encyclopedic knowledge. NS represents word meanings as commonsense knowledge, and builds no special representation language (other than elements of first-order logic). The idea of teaching computers commonsense knowledge originated with McCarthy and Hayes (1969), and has been extended by a number of researchers (Hobbs and Moore, 1985, Lenat et al, 1986). Commonsense knowledge is a set of naive beliefs, at times vague and inaccurate, about the way the world is structured. Traditionally, word meanings have been viewed as criterial, as giving truth conditions for membership in the classes words name. The theory of NS, in identifying word meanings with commonsense knowledge, sees word meanings as typical descriptions of classes of objects, rather than as criterial descriptions. Therefore, reasoning with NS representations is probabilistic rather than monotonic.

This book is divided into two parts. Part I elaborates the theory of Naive Semantics. Chapter 1 illustrates and justifies the theory. Chapter 2 details the representation of nouns in the theory, and Chapter 4 the verbs, originally published as "Commonsense Reasoning with Verbs" (McDowell and Dahlgren, 1987). Chapter 3 describes kind types, which are naive constraints on noun representations. Part II describes the contributions of NS to computational text understanding. Chapter 5 describes the implementation of the theory in a computational text understanding system, Kind Types (KT), first described in Dahlgren and McDowell (1986a). The remaining chapters demonstrate the usefulness of NS representations in taking steps toward solving several outstanding problems in computational linguistics. Chapter 6 describes disambiguation of prepositional phrases using NS representations. This chapter was originally published as "Using Commonsense Knowledge to Disambiguate Prepositional Phrase Modifiers" by Dahlgren and McDowell, 1986b. Chapter 7 provides an algorithm for word sense disambiguation. The work was originally reported in "Using Common-
sense Knowledge to Disambiguate Word Senses” (Dahlgren, 1988a). Chapter 8 proposes a model of discourse interpretation in which all modules of grammar, including naive inference, have access to each other in the process of generating a coherent picture of the meaning of a text. The proposal integrates NS with Discourse Representation Theory (Kamp, 1981, Heim, 1982, Asher, 1987). We suggest a method for extracting coherence relations using naive inference along with syntactic and semantic information.

Joyce McDowell is a co-originator of much of the work described in this book. I would like to thank Nicholas Asher, William Banks, John Bateman, Ezra Black, Tyler Burge, Joseph Emonds, Arthur Graesser, James Hurford, Leah Light, Ronald Macaulay, Eric Wehrli, Michael McCord, James Moore, Edward Stabler, Jr., Barbara Partee and anonymous reviewers for their invaluable comments and discussions of this research. Susan Hirsh, Susan Mordechay, and Carol Lord have contributed to both the theory and the construction of the Kind Types system. The management of the IBM Los Angeles Scientific Center has been most supportive, particularly Juan Rivero, John Kepler and James Jordan. Finally, there could not have been a book without the unusual patience of my family during the course of its creation.