Respiratory Control
A Modeling Perspective
Respiratory Control
A Modeling Perspective

Edited by
George D. Swanson
University of Colorado Health Science Center
Denver, Colorado
and California State University, Chico
Chico, California

Fred S. Grodins
Late of University of Southern California
Los Angeles, California

and
Richard L. Hughson
University of Waterloo
Waterloo, Ontario, Canada

PLENUM PRESS • NEW YORK AND LONDON
OXFORD CONFERENCES

September 1978
University Laboratory of Physiology at Oxford
"Modeling of a Biological Control System: The Regulation of Breathing"
Organizing Committee
E. R. Carson (London), D. J. C. Cunningham (Oxford), R. Herczynski (Warsaw)
D. J. Murray-Smith (Oxford) and E. S. Petersen (Oxford)

September 1982
University of California Conference Center at Lake Arrowhead
"Modeling and Control of Breathing"
Organizing Committee
J. W. Bellville (Los Angeles), F. S. Grodins (Los Angeles)
G. D. Swanson (Denver), S. A. Ward (Los Angeles), K. Wasserman (Torrance)
B. J. Whipp (Torrance) and D. M. Wiberg (Los Angeles)

September 1985
Medieval Abbey of Solignac
"Concepts and Formalizations in the Control of Breathing"
Organizing Committee
G. Benchetrit (Grenoble), P. Baconnier (Grenoble) and J. Demongeot (Grenoble)

September 1988
Shadow Cliff Life Center at Grand Lake
"Control of Breathing: A Modeling Perspective"
Organizing Committee
F. S. Grodins (Los Angeles), R. L. Hughson (Waterloo)
G. D. Swanson (Denver) and D. S. Ward (Los Angeles)
The fourth Oxford Conference entitled "Control of Breathing: A Modeling Perspective" was held in September of 1988 at Grand Lake, Colorado. Grand Lake, also called Spirit Lake, was chosen for the fourth meeting so as to continue the meditative atmosphere of the previous meetings and to put the conference on a new higher plane (8,500 feet). The weather, as promised, exhibited its random-like rain showers. The snow report became essential for traveling the 12,000 foot passes to and from Grand Lake. Even the services such as telephone and electricity proved to be uncertain. In all, the overall atmosphere of Spirit Lake contributed to an uninhibited free-style of presentation and interaction.

All of us who attend the Oxford Conferences share a common interest in exploring respiratory control and the regulation of breathing. Modeling has become an adjunct to our exploration process. For us, models are tools that extend our ability to conceptualize just as instruments are tools that extend our ability to measure. And so these meetings attract physicians, physiologists, mathematicians and engineers who are modelers and modelers who are engineers, mathematicians, physiologists and physicians.

Four of these physician-modelers have now passed away. They have been very important mentors for many of us. J. W. Bellville was my Ph.D. dissertation advisor at Stanford who introduced me to the intrigue of respiratory control. G. F. Filley was my colleague at the University of Colorado who enhanced my thinking about respiratory control. E. S. Peterson was my friend at Oxford who helped me appreciate the history of respiratory control. F. S. Grodins was my mentor at the University of Southern California who taught me to model respiratory control.

I first met Fred Grodins while I was a student at Stanford. He sent me a box of IBM cards that allowed us to explore his 1967 model in detail. The model began to teach us at Stanford almost as if Fred was there in person. While at UCLA, I began to interact with Fred more directly. This was a time when he was concerned about the coupling between ventilation
and cardiac output and their joint role in the exercise hyperpnea problem. I was beginning to develop my feedforward/feedback concept (see front cover) as a useful model. Fred began thinking along entirely different lines.

Whereas many of us were searching for the allusive feedforward exercise stimulus, Fred was intrigued with the idea that optimization considerations might yield a controller structure such that an explicit exercise stimulus was not needed. He was particularly concerned with the coupling between ventilation and cardiac output and that the oxygen cost of moving blood via cardiac output was substantially higher than the oxygen cost of moving air via ventilation. Furthermore, he went on to suggest that if enough constraints were applied to the system variables, the system could behave as observed experimentally without an explicit exercise stimulus! This was a remarkable idea at the time and still is.

The legacy of Fred Grodins is a succession of ideas that continue to surface in a variety of forms at these Oxford Conferences. For it was his pioneering work in modeling that took place in the 50’s 60’s and 70’s that set the frame work for our first meeting at Oxford ten years ago. Fred attended each conference until the Grand Lake meeting when his health prevented him from traveling to Colorado.

Dr. Grodins agreed to be the co-editor of this book which represents the proceedings of the Grand Lake meeting. He served on the planning committee with R. L. Hughson, D. S. Ward and myself. R. L. Hughson agreed to step in as an additional co-editor as the need arose.

All of us on the planning committee appreciate the financial support from the Department of Anesthesiology at the University of Colorado Medical School, the Biomedical Simulations Resource at the University of Southern California and Marquest Medical Products of Denver. We also want to thank the Shadow Cliff Life Center at Grand Lake for hosting the meeting and providing facilities. In addition, we appreciate the long hours of devotion of Mary Ann Hammond, my secretary at Denver. She certainly served in every capacity as required to make this meeting a success.

These Oxford Conferences continue the tradition of bringing together international scientists in a unique setting. The product is the scientific exchange resulting in the proceedings. The process of these meetings is not so apparent but equally important. This process depends on remarkable events. R. Herczynski, who was unable to attend the first three meetings, attended this fourth Oxford Conference at Grand Lake. G. F. Filley, who loved the Rocky Mountains, presented his last scientific
paper at Grand Lake. D. J. C. Cunningham, who acted as our historian with respect to the Douglas expedition to the Rocky Mountains, experienced first hand, the altitude effects of Pikes Peak. B. Torrance, who created a marvelous after dinner speech, saluted Mabel Purefoy Fitzgerald.

George David Swanson
Chico, California
November, 1989
CONTENTS

Introductory Address: Oxford and Yale Physiologists in Colorado in 1911
D.J.C. Cunningham ... 1

RESPIRATORY CONTROL AND GAS EXCHANGE KINETICS DURING EXERCISE

Does Arterial Plasma Potassium Contribute to Exercise Hyperpnoea? 11
D.J. Paterson, P.A. Robbins, J. Conway, and P.C.G. Nye

Regulation of Alveolar Ventilation and Arterial Blood Gases During Exercise 21
H.V. Forster and L.G. Pan

Evidence for Possible "Cardiogenic" Respiratory Drives in Exercising Man 33
P.W. Jones and J.M. Wakefield

The Validity of the Cardiodynamic Hypothesis for Exercise Hyperpnea in Man 43
Y. Miyamoto, K. Niizeki, T. Sugawara, Y. Nakazono, K. Kawahara, and M. Mussell

Neurogenic and Cardiodynamic Drives in the Early Phase of Exercise Hyperpnea in Man .. 53
T. Morikawa, Y. Sakakibara and Y. Honda

The Effect of Exercise on The Central and Peripheral Chemoreceptor Thresholds to Carbon Dioxide in Man ... 63
J. Duffin

Modelling the Ventilatory Response to Pulses of Inhaled Carbon Dioxide in Exercise 71
K.B. Saunders, C.F. Patil, and M.S. Jacobi

Control of Ventilation During Heavy Exercise in Man .. 81
R. Jeyaranjan, R. Goode and J. Duffin
Estimating Arterial PCO2 From Flow-Weighted and
Time-Average Alveolar PCO2 During
Exercise... 91
B.J. Whipp, N. Lamarra, S.A. Ward, J.A. Davis,
and K. Wasserman

The Effect of Exercise Intensity on the Linearity
of Ventilatory and Gas Exchange Responses
to Exercise.. 101
Y. Yamamoto, K. Mokushi, S. Tamura, Y. Mutoh,
and M. Miyashita

Interrelation of Respiratory Responses to VCO2
Pedal Rate and Loading Force During
Cycle Exercise... 111
N. Takano

On Smoothing Gas Exchange Data and Estimation
of the Ventilatory Threshold........................... 121
D.L. Sherrill and G.D. Swanson

Kinetics of Oxygen Uptake Studied with Two
Different Pseudorandom Binary Sequences............. 131
R.L. Hughson, D.A. Winter, A.E. Patla,
J.E. Cochrane, L.A. Cuervo,
and G.D. Swanson

Gas Exchange Inferences for the Proportionality
of the Cardiopulmonary Responses During
Phase I of Exercise.. 137
S. Ward, N. Lamarra and B.J. Whipp

On Modelling Alveolar Oxygen Uptake Kinetics........ 147
J.E. Cochrane, R.L. Hughson and P.C. Murphy

A General-Purpose Model for Investigating
Dynamic Cardiopulmonary Responses
During Exercise.. 155
N. Lamarra, S.A. Ward and B.J. Whipp

Lactate Balance During Low Levels of Exercise........ 165
J.W. Reed and L. Parker

Oxygen Kinetics in the Elderly.......................... 171
D.H. Paterson, D.A. Cunningham and
M.A. Babcock

Breath-by-breath Gas Exchange: Data Collection
and Analysis... 179
R.L. Hughson and G.D. Swanson

RESPIRATORY CONTROL DURING ALTERED GAS MIXTURES

Increased Arterial Potassium Levels May
Contribute to the Drive to Breathe at
Very High Altitude................................. 191
D.J. Paterson and P.C.G. Nye
Hypoxia > 25 Years After Carotid Body Resection
Causes More Tachycardia Although Less
Hyperventilation Than in Controls.............. 201
Y. Honda, I. Hashizume, H. Kimura and,
J. Severinghaus

The Transients in Ventilation Arising from
a Period of Hypoxia at Near Normal and
Raised Levels of End-Tidal CO₂ in Man.......... 207
S. Khamnei and P.A. Robbins

Asymmetry in the Ventilatory Response to a Bout
of Hypoxia in Human Beings....................... 217
C. Boetger-Mann, K.A. Aqleh and D.S. Ward

Studies on Exercise Hyperpnea in Relation
with Hypoxic Ventilatory
Chemosensitivity Measured at Rest............... 225
Y. Ohyabu, I. Ohyabu, A. Usami and Y. Honda

Dynamics of the Ventilatory Controller and
Hypoxic Stimulation in Man....................... 235
J. Bertholon, M. Eugene, E. Labeyrie
and A. Teillac

Building Dynamic Models of the Control of
Breathing During Hypoxia........................ 245
D. Ward, J. DeGoede and A. Berkenbosch

Evidence in Man to Suggest Interaction Between
the Peripheral and Central
Chemoreceptors.................................... 255
P. Robbins

Modelling the Dynamic Ventilatory Response
to Carbon Dioxide in Healthy Human
Subjects During Normoxia...................... 265
A. Dahan, I.C.W. Olievier, A. Berkenbosch,
and J. DeGoede

Dynamics of the Peripheral Chemoreflex Loop
Following Acute Acid-Base Disturbances
in Cats.. 275
J.J. Schuitmaker, J. De Goede, A. Berkenbosch,
C.N. Olievier, and D.S. Ward

3-D Theory of Respiration: The Steady-State Case.... 285
R. Herczynski and P.A. Robbins

Inhaled CO₂ as a Constant Fraction in Inspired
Air and as Early-Inspired Pulses............... 299
M.J. Mussell, Y. Miyamoto, and Y. Nakazono

BREATHING PATTERNS AND NEURAL FACTORS

Adaptive Multivariate Autoregressive Modelling
of Respiratory Cycle Variables................. 309
L.M. Ackerson, R.H. Jones, and E.N. Bruce
Factors Inducing Periodic Breathing in Man
During Acclimatization to Chronic Hypoxia...... 317
W. Fordyce and R. Kanter

A Model of Respiratory Variability During
Non-Rem Sleep.................................. 327
M.C.K. Khoo

The Use of Deep Non-Rem Sleep to Study the
Pattern of Breathing in the Absence of
Any Forebrain Influences......................... 337
S.A. Shea, R.L. Horner, G. Benchetrit,
and A. Guz

Modelling the Breath by Breath Variability in
Respiratory Data.................................. 343
C.P. Patil, K.B. Saunders, and B. McA. Sayers

Is the Respiratory Rhythm Multistable in Man?....... 353
A. Hugelin and J.F. Vibert

Ventilatory Responses to Short Carotid Sinus
Pressure Stimuli: Interpretation Using
a Model of Rhythm Generation...................... 361
R. Maass-Moreno and P.G. Katona

Comparison of Unification Techniques for
Inconstant Intervals of Breath-by-Breath
Sequence... 369
Y. Nakamura, Y. Yamamoto, and K. Nakazawa

Phase Resetting of Respiratory Rhythm Studied
in a Model of a Limit-Cycle Oscillator:
Influence of Stochastic Processes.................. 379
F. Eldridge and D. Paydarfar

Intracycle Relationship Between Successive
Phases of the Respiration: A New
Modelling Assumption.............................. 389
J. Demongeot, P. Pachot, P. Baconnier,
S. Muzzin, and G. Benchetrit

Is Respiratory Period Spectrum Characteristic
of State, Individual, Sex and Species?............ 399
J.F. Vibert and A. Hugelin

Isopnoeic Analyses of Human Steady-State
Flow Profiles....................................... 409
R. Painter and D. Cunningham

In Favour of an "Holistic" Approach to the
Analysis of the Pattern of Breathing............. 417
G. Benchetrit, S. Shea, P. Baconnier,
T. Dinh, and A. Guz

Vagal Control on Exercise-Induced Hyperpnea
in Conscious Dogs................................ 423
K. Sasaki, H-L. Hahn, and J.A. Nadel
Expiratory Activity Recorded During Exercise from Human M. Biceps Brachii Reinnervated by Internal Intercostal Nerves... 431
M. Sibuya, A. Kanamaru, and I. Homma

Recruitment and Frequency Coding of Diaphragm Motor Units during Ventilatory and Non-Ventilatory Behaviors 441
G.C. Sieck

Supraspinal Descending Control of Propriospinal Respiratory Neurons in the Cat 451
M. Aoki, Y. Fujito, I. Kosaka, and N. Kobayashi

Index 461