Graduate Texts in Mathematics 117

Editorial Board S. Axler F.W. Gehring P.R. Halmos

Springer Science+Business Media, LLC

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFER. Topological Vector Spaces.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra. 2nd ed.
- 5 MAC LANE. Categories for the Working Mathematician.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiomatic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable I. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILLEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS. Linear Algebraic Groups.
- 22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 HEWITT/STROMBERG. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 KELLEY. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol.I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol.II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.
- 32 JACOBSON. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.

- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
- 36 KELLEY/NAMIOKA et al. Linear Topological Spaces.
- 37 MONK. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C*-Algebras.
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 EDWARDS. Fermat's Last Theorem.
- 51 KLINGENBERG. A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic.
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.
- 58 KOBLITZ. *p*-adic Numbers, *p*-adic Analysis, and Zeta-Functions. 2nd ed.
- 59 LANG. Cyclotomic Fields.
- 60 ARNOLD. Mathematical Methods in Classical Mechanics. 2nd ed.

continued after index

Jean-Pierre Serre

Algebraic Groups and Class Fields

Translation of the French Edition

Jean-Pierre Serre Professor of Algebra and Geometry Collège de France 75231 Paris Cedex 05 France

Editorial Board

S. Axler	F.W. Gehring	P.R. Halmos
Department of Mathematics,	Department of Mathematics,	Department of Mathematics
Michigan State University,	University of Michigan,	Santa Clara University,
East Lansing, MI 48824	Ann Arbor, MI 48109	Santa Clara, CA 95053
USA	USA	USA

AMS Classifications: 11G45 11R37

LCCN 87-32121

This book is a translation of the French edition: Groupes algébriques et corps de classes. Paris: Hermann, 1975.

© 1988 by Springer Science+Business Media New York

Originally published by Springer-Verlag New York Inc. in 1988

Softcover reprint of the hardcover 1st edition 1988

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC . except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Text prepared in camera-ready form using T_FX.

9 8 7 6 5 4 3 2 (Corrected second printing, 1997)

ISBN 978-1-4612-6993-9 ISBN 978-1-4612-1035-1 (eBook) DOI 10.1007/978-1-4612-1035-1

Contents

CHAPTER I Summary of Main Results

1. Generalized Jacobians	1
2. Abelian coverings	3
3. Other results	4
Bibliographic note	5

1

CHAPTER II Algebraic Curr

Algebraic Curves		6
1.	Algebraic curves	6
2.	Local rings	7
3.	Divisors, linear equivalence, linear series	8
4.	The Riemann-Roch theorem (first form)	10
5.	Classes of répartitions	11
6.	Dual of the space of classes of répartitions	12
7.	Differentials, residues	14
8.	Duality theorem	16
9.	The Riemann-Roch theorem (definitive form)	17
10.	Remarks on the duality theorem	18
11.	Proof of the invariance of the residue	19
12.	Proof of the residue formula	21
13.	Proof of lemma 5	23
	Bibliographic note	25

CHAPTER III

Maps From a Curve to a Commutative Group	27
§1. Local symbols	27
1. Definitions	27
2. First properties of local symbols	30
3. Example of a local symbol: additive group case	33
4. Example of a local symbol: multiplicative group case	34
§2. Proof of theorem 1	37
5. First reduction	37
6. Proof in characteristic 0	38
7. Proof in characteristic $p > 0$: reduction of the problem	40
8. Proof in characteristic $p > 0$: case a)	41
9. Proof in characteristic $p > 0$: reduction of case b) to the	
unipotent case	42
10. End of the proof: case where G is a unipotent group	43
§3. Auxiliary results	45
11. Invariant differential forms on an algebraic group	45
12. Quotient of a variety by a finite group of automorphisms	48
13. Some formulas related to coverings	51
14. Symmetric products	53
15. Symmetric products and coverings	54
Bibliographic note	56

CHAPTER IV Singular Algebraic Ca

Singular	Algebraic Curves	58
§1. Struc	ture of a singular curve	58
1.	Normalization of an algebraic variety	58
2.	Case of an algebraic curve	59
3.	Construction of a singular curve from its normalization	60
4.	Singular curve defined by a modulus	61
§2. Riem	ann-Roch theorems	62
5.	Notations	62
6.	The Riemann-Roch theorem (first form)	63
7.	Application to the computation of the genus of an alge-	
	braic curve	64
8.	Genus of a curve on a surface	65
§3. Differ	entials on a singular curve	68
9.	Regular differentials on X'	68
10.	Duality theorem	70
11.	The equality $n_Q = 2\delta_Q$	71
12.	Complements	72
Biblic	ographic note	73

CHAPTER V Generalized Jacobia

jen	eralized Jacobians	74
§1.	Construction of generalized Jacobians	74
	1. Divisors rational over a field	74
	2. Equivalence relation defined by a modulus	76
	3. Preliminary lemmas $f(\tau)$	77
	4. Composition law on the symmetric product $X^{(n)}$	79
	5. Passage from a birational group to an algebraic group	80
	0. Construction of the Jacobian $J_{\mathfrak{m}}$	81
§2.	Universal character of generalized Jacobians	82
	7. A homomorphism from the group of divisors of X to $J_{\mathfrak{m}}$	82
	8. The canonical map from X to $J_{\mathfrak{m}}$	84
	9. The universal property of the Jacobians $J_{\mathfrak{m}}$	87
	10. Invariant differential forms on $J_{\mathfrak{m}}$	89
§3.	Structure of the Jacobians $J_{\mathfrak{m}}$	90
	11. The usual Jacobian	90
	12. Relations between Jacobians $J_{\mathfrak{m}}$	91
	13. Relation between $J_{\mathfrak{m}}$ and J	91
	14. Algebraic structure on the local groups $U/U^{(n)}$	92
	15. Structure of the group $V_{(n)}$ in characteristic zero	94
	16. Structure of the group $V_{(n)}$ in characteristic $p > 0$	94
	17. Relation between $J_{\mathfrak{m}}$ and J : determination of the alge-	
	braic structure of the group $L_{\mathfrak{m}}$	96
	18. Local symbols	98
	19. Complex case	99
§4.	Construction of generalized Jacobians: case of an arbitrary	
	base field	102
	20. Descent of the base field	102
	21. Principal homogeneous spaces	104
	22. Construction of the Jacobian $J_{\mathfrak{m}}$ over a perfect field	105
	23. Case of an arbitrary base field	107
	Bibliographic note	108

CHAPTER VI

Class Field Theory	109
§1. The isogeny $x \to x^q - x$	109
1. Algebraic varieties defined over a finite field	109
2. Extension and descent of the base field	110
3. Tori over a finite field	111
5. Quadratic forms over a finite field	114
6. The isogeny $x \to x^q - x$: commutative case	115

§2.	Coverings and isogenies	117
	7. Review of definitions about isogenies	117
	8. Construction of coverings as pull-backs of isogenies	118
	9. Special cases	119
	10. Case of an unramified covering	120
	11. Case of curves	121
	12. Case of curves: conductor	122
§3.	Projective system attached to a variety	124
	13. Maximal maps	124
	14. Some properties of maximal maps	127
	15. Maximal maps defined over k	129
§4.	Class field theory	130
	16. Statement of the theorem	130
	17. Construction of the extensions E_{α}	132
	18. End of the proof of theorem 1: first method	134
	19. End of the proof of theorem 1: second method	135
	20. Absolute class fields	137
	21. Complement: the trace map	138
§5.	The reciprocity map	139
	22. The Frobenius substitution	139
	23. Geometric interpretation of the Frobenius substitution	140
	24. Determination of the Frobenius substitution in an exten-	
	sion of type α	141
	25. The reciprocity map: statement of results	142
	26. Proof of theorems 3, $3'$, and $3''$ starting from the case of	
	curves	144
	27. Kernel of the reciprocity map	145
§6.	Case of curves	146
	28. Comparison of the divisor class group and generalized	
	Jacobians	146
	29. The idèle class group	149
	30. Explicit reciprocity laws	150
§7.	Cohomology	152
	31. A criterion for class formations	152
	32. Some properties of the cohomology class $u_{F/E}$	155
	33. Proof of theorem 5	156
	34. Map to the cycle class group	157
	Bibliographic note	159

CHAPTER VII

Group Extension and Cohomology	161
§1. Extensions of groups	161

	1.	The groups $Ext(A, B)$	161
	2	The first exact sequence of Ext	164
	3	Other exact sequences	165
	4.	Factor systems	166
	5.	The principal fiber space defined by an extension	168
	6.	The case of linear groups	169
§2.	Struc	cture of (commutative) connected unipotent groups	171
Ŭ	7.	The group $Ext(\mathbf{G}_a, \mathbf{G}_a)$	171
	8.	Witt groups	171
	9.	Lemmas	173
	10.	Isogenies with a product of Witt groups	175
	11.	Structure of connected unipotent groups: particular cases	177
	12.	Other results	178
	13.	Comparison with generalized Jacobians	179
§3.	Exte	nsions of Abelian varieties	180
	14.	Primitive cohomology classes	180
	15.	Comparison between $Ext(A, B)$ and $H^1(A, \mathcal{B}_A)$	181
	16.	The case $B = \mathbf{G}_m$	183
	17.	The case $B = \mathbf{G}_a$	184
	18.	Case where B is unipotent	186
§4.	Coho	omology of Abelian varieties	187
	19.	Cohomology of Jacobians	187
	20 .	Polar part of the maps $\varphi_{\mathfrak{m}}$	190
	21.	Cohomology of Abelian varieties	190
	22.	Absence of homological torsion on Abelian varieties	192
	23.	Application to the functor $Ext(A, B)$	195
	Bibli	ographic note	196

Bibliography	198
Supplementary Bibliography	204
Index	206