Adhesion-GPCRs
Recent Volumes in this Series

Volume 698
BIO-FARMS FOR NUTRACEUTICALS: FUNCTIONAL FOOD AND SAFETY CONTROL BY BIOSENSORS
Maria Teresa Giardi, Giuseppina Rea and Bruno Berra

Volume 699
MCR 2009: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MULTI-COMPONENT REACTIONS AND RELATED CHEMISTRY, EKATERINBURG, RUSSIA
Maxim A. Mironov

Volume 700
REGULATION OF MICRORNAS
Helge Großhans

Volume 701
OXYGEN TRANSPORT TO TISSUE XXXII
Duane F. Bruley and J.C. LaManna

Volume 702
RNA EXOSOME
Torben Heick Jensen

Volume 703
INFLAMMATION AND RETINAL DISEASE
John D. Lambris and Anthony P. Adamis

Volume 704
TRANSIENT RECEPTOR POTENTIAL CHANNELS
Md. Shahidul Islam

Volume 705
THE MOLECULAR IMMUNOLOGY OF COMPLEX CARBOHYDRATES-3
Albert M. Wu

Volume 706
ADHESION-GPCRs: STRUCTURE TO FUNCTION
Simon Yona and Martin Stacey

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
Adhesion-GPCRs
Structure to Function

Edited by

Simon Yona, PhD
Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel

Martin Stacey, DPhil
Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK

Springer Science+Business Media, LLC
Landes Bioscience
PREFACE

Upon completion of the human genome project over 800 G protein-coupled receptor (GPCR) genes, subdivided into five categories, were identified. These receptors sense a diverse array of stimuli, including peptides, ions, lipid analogues, light and odour, in a discriminating fashion. Subsequently, they transduce a signal from the ligand–receptor complex into numerous cellular responses. The importance of GPCRs is further reflected in the fact that they constitute the most common target for therapeutic drugs across a wide range of human disorders. Phylogenetic analysis of GPCRs produced the GRAFS classification system, which subdivides GPCRs into five discrete families: glutamate, rhodopsin, adhesion, frizzled/taste and secretin receptors. The adhesion-GPCR family can be further subdivided into eight groups.

The field of adhesion-GPCR biology has indeed become large enough to require a volume dedicated solely to this field. The contributors to this book have made a courageous effort to address the key concepts of adhesion-GPCR biology, including the evolution and biochemistry of adhesion-GPCRs; there are extensive discussions on the functional nature of these receptors during development, the immune response and tumourgenesis. Finally, there are chapters dedicated to adhesion-GPCR signalling, an area of intense investigation.

This volume focuses on the recent advances in adhesion-GPCR biology. In Chapter 1, we learn about the evolution of the adhesion-GPCR genes in several species including mouse, rat, dog, chicken and the early vertebrate Branchiostoma. In Chapter 2, Formstone continues examining both invertebrate and vertebrate adhesion-GPCRs while discussing Flamingo/Starry Night (Drosophila) and Celsr (vertebrate). Both are of particular interest as core components of planar cell polarity during embryonic development. The roles of adhesion-GPCRs regarding embryogenesis and organogenesis are further analyzed in Chapter 3, in which Langenhan and Russ describe their recent observations concerning the adhesion-GPCR lat-1 as a new signalling receptor, which is essential to control long-range tissue polarity in the C. elegans embryo.

Structurally, the adhesion-GPCR family is defined by a large extracellular region linked to a TM7 moiety via a GPS (G protein-coupled receptor proteolytic site)-containing stalk region. In Chapter 4, Lin et al explore how this proteolytic cleavage was identified as an intrinsic protein modification process in the majority adhesion-GPCRs and dissect
its mechanism and functional consequences. Silva and Ushkaryov further develop the functional value of the GPS site through their description of Latrophilin. This neuronal adhesion-GPCR is the major brain receptor for the black widow spider toxin α-latrotoxin, which stimulates neuronal exocytosis in vertebrates. Chapter 5 presents the latest data regarding the function, signaling and ligands for latrophilin and its related receptors, in addition to dissecting the unusual aspects of post-translational cleavage and signalling by its receptor subunits.

The extended N-terminus region of adhesion-GPCRs often contain common structural domains including epidermal growth factor-like (EGF), thrombospondin repeats, leucine-rich repeats (LRR), lectin-like, immunoglobulin (Ig), cadherins and numerous others. In other proteins many of these domains are involved in protein–protein interactions and cell adhesion; hence the “adhesion-GPCR” nomenclature was conceived reflecting the potential dual roles in cellular adhesion and signaling. In Chapter 6, McMillan and White discuss the very large G protein-coupled receptor 1 (VLGR1) which is most notable for being the largest cell surface receptor in man. The large ectodomain of the protein contains several repeated motifs, including some 35-calcium binding, Calx-β repeats and seven copies of an epitempin repeat thought to be associated with the development of epilepsy. At least two spontaneous and two targeted mutant mouse lines are currently known. Mutant mice are sensitive to audiogenic seizures, have cochlear defects and significant, progressive hearing impairment. Mutations in VLGR1 in humans result in one form (2C) of Usher syndrome, the most common genetic cause of combined blindness and deafness.

Mutations in other adhesion-GPCRs, including the receptor GPR56, are also known to cause human disease. In Chapter 7, Strokes and Piao discuss how these mutations cause excess neuronal migration and a malformed cerebral cortex in the CNS in both primates and rodents. With the emerging effort in studying developmental processes, the vital roles in the development and function of the CNS of other members will be described. In Chapter 8, Xu explains other aspects of GPR56 biology, describing its binding to tissue transglutaminase, a major crosslinking enzyme in the extracellular matrix, and how its expression is suppressed in melanoma metastasis. The functions of GPR56 in cancer progression and the signalling pathways it mediates are also discussed. Further support of the potential importance of adhesion-GPCRs in tumorogenesis is discussed in Chapter 9. Aust profiles the expression of adhesion-GPCRs in tumors from databases and primary research articles and discusses their relevant roles in cell-cell communication, cell migration and angiogenesis.

The EGF-TM7 adhesion-GPCR subfamily are predominately expressed by leukocytes and are involved in coordinating both the innate and acquired immune responses. In Chapter 10, Yona et al highlight some recent immunological advances in relation to EGF-TM7 proteins and other members of the adhesion-GPCR family. Hamann et al, in Chapter 11, show how the use of specific antibodies towards the EGF-TM7 adhesion-GPCR CD97 inhibit the accumulation of granulocytes at sites of inflammation, thereby affecting innate immune responses. Spendlove and Sutavani expand on the role of CD97 through its interaction with the complement control protein DAF/CD55 in Chapter 12. The structural aspects of the CD55-CD97 complex are examined and its functional consequences in T-cell activation are also discussed. In Chapter 13, Lin et al review the historical and functional aspect of the macrophage specific adhesion-GPCR,
F4/80. The F4/80 antigen has now been used for over 30 years as an excellent marker for tissue macrophages. More recently, the receptor has been cloned and identified as an EGF-TM7 receptor critical for the induction of efferent CD8+ regulatory T cells responsible for peripheral immune tolerance.

Until recently, the signaling cascades of almost all adhesion-GPCRs have remained a mystery. In Chapter 14, Mizuno and Itoh review previous reports which suggest G protein-dependent and independent signaling pathways of adhesion-GPCRs and present successful approaches used to investigate the signal transduction of GPR56. In Chapter 15, Park and Ravichandran describe a signaling success story and review the phylogeny, structure, associating proteins, and proposed functions of BAI1. These include its role as a signaling phosphatidylserine receptor in the uptake of apoptotic cells by phagocytes.

Finally, Chapter 16 by Davies and Kirchhoff describes the expression of adhesion-GPCRs within the male reproductive tract and reviews their potential contribution in reproductive competence.

We would like to record our sincere thanks to all our contributors.

Simon Yona, PhD
Department of Immunology, The Weizmann Institute of Science
Rehovot, Israel

Martin Stacey, DPhil
Institute of Molecular and Cellular Biology, University of Leeds
Leeds, UK

REFERENCES

ABOUT THE EDITORS...

SIMON YONA, PhD, graduated from Kings College, University of London with a BSc in Physiology and a MSc in Pharmacology, before completing a PhD with Prof. R.J. Flower FRS and Prof. M. Perretti, at St. Bartholomew’s Hospital, University of London. Following his doctorate Simon took up a Postdoctoral Research position with Prof. S. Gordon FRS, at the Sir William Dunn School of Pathology, University of Oxford, where he investigated the roles and functions of the leukocyte restricted adhesion-GPCRs. Dr. Yona moved from Oxford to join the group of Prof. S. Jung, at the Weizmann Institute of Science, Rehovot, Israel when he was awarded a Federation of European Biochemical Societies, International Fellowship. Currently he is investigating the developmental profile of mononuclear phagocytes in a number of pathologies.
ABOUT THE EDITORS...

MARTIN STACEY, DPhil (Oxon), graduated from Hertford College, University of Oxford with an MBiochem before completing a DPhil in the laboratory of Prof. S. Gordon FRS. He continued working at the Sir William Dunn School of Pathology for a number of years where he cloned and characterized leukocyte adhesion-GPCRs and demonstrated the existence of their cell surface ligands. More recently, Dr. Stacey has been appointed as a Lecturer of Immunology, at the University of Leeds where his laboratory focuses on adhesion-GPCRs and role of myeloid cells in human disease.
PARTICIPANTS

Gabriela Aust
Department of Surgery
Research Laboratories
University of Leipzig
Leipzig
Germany

Annemieke M. Boots
Department of Immune Therapeutics
Schering-Plough Research Institute
Molenstraat
The Netherlands

Gin-Wen Chang
Department of Microbiology and Immunology
College of Medicine
Chang Gung University
Kwei-San, Tao-Yuan
Taiwan

Ben Davies
Wellcome Trust Centre for Human Genetics
University of Oxford
Oxford
UK

Dorien M. de Groot
Department of Immune Therapeutics
Schering-Plough Research Institute
Molenstraat
The Netherlands

Hans van Eenennaam
Department of Immune Therapeutics
Schering-Plough Research Institute
Molenstraat
The Netherlands

Caroline J. Formstone
MRC Centre for Developmental Neurobiology
Kings College London
London
UK

Robert Fredriksson
Department of Neuroscience
Biomedical Center
Uppsala University
Uppsala
Sweden

Siamon Gordon
Sir William Dunn School of Pathology
University of Oxford
Oxford
UK

Jörg Hamann
Department of Experimental Immunology
Academic Medical Center
University of Amsterdam
Amsterdam
The Netherlands
Claudia L. Hofstra
Department of Immune Therapeutics
Schering-Plough Research Institute
Molenstraat
The Netherlands

Hiroshi Itoh
Department of Cell Biology
Nara Institute of Science and Technology
Takayama, Ikoma
Japan

Christiane Kirchhoff
Department of Andrology
University Hospital Hamburg Eppendorf
Hamburg
Germany

Jon D. Laman
Department of Immunology
and MS Centre ErasMS
University Medical Center Rotterdam
Rotterdam
The Netherlands

Tobias Langenhan
Institute of Physiology
and
Rudolf Virchow Center
DFG Research Center for Experimental Biomedicine
University of Würzburg
Würzburg
Germany
and
Department of Biochemistry
Laboratory of Genes and Development
University of Oxford
Oxford
UK

Hsi-Hsien Lin
Department of Microbiology
and Immunology
College of Medicine
Chang Gung University
Kwei-San, Tao-Yuan
Taiwan

D. Randy McMillan
Department of Pediatrics
University of Texas Southwestern Medical Center
Dallas, Texas
USA

Norikazu Mizuno
Department of Cell Biology
Nara Institute of Science and Technology
Takayama, Ikoma
Japan

Karl J.V. Nordström
Department of Neuroscience
Biomedical Center
Uppsala University
Uppsala
Sweden

Daeho Park
Center for Cell Clearance
and
Beirne Carter Center for Immunology Research
University of Virginia
Charlottesville, Virginia
USA

Xianhua Piao
Division of Newborn Medicine
Children’s Hospital Boston
Harvard Medical School
Boston, Massachusetts
USA

Kodi S. Ravichandran
Center for Cell Clearance
and
Beirne Carter Center for Immunology Research
and
Department of Microbiology
University of Virginia
Charlottesville, Virginia
USA
PARTICIPANTS

Andreas P. Russ
Department of Biochemistry
Laboratory of Genes and Development
University of Oxford
Oxford
UK

Helgi B. Schiöth
Department of Neuroscience
Biomedical Center
Uppsala University
Uppsala
Sweden

John-Paul Silva
Division of Cell and Molecular Biology
Imperial College London
London
UK

Ian Spendlove
The City Hospital
Academic Clinical Oncology
University of Nottingham
Nottingham
UK

Martin Stacey
Institute of Molecular and Cellular Biology
University of Leeds
Leeds
UK

Joan Stein-Streilein
Department of Ophthalmology
Schepens Eye Research Institute
Boston, Massachusetts
USA

Natalie Strokes
Division of Newborn Medicine
Children’s Hospital Boston
Harvard Medical School
Boston, Massachusetts
USA

Ruhcha Sutavani
The City Hospital
Academic Clinical Oncology
University of Nottingham
Nottingham
UK

Paul P. Tak
Division of Clinical Immunology and Rheumatology
Academic Medical Center
University of Amsterdam
Amsterdam
The Netherlands

Yuri A. Ushkaryov
Division of Cell and Molecular Biology
Imperial College London
London
UK

Henrike Veninga
Department of Experimental Immunology
Academic Medical Center
University of Amsterdam
Amsterdam
The Netherlands

Lizette Visser
Department of Immunology and MS Centre ErasMS
University Medical Center Rotterdam
Rotterdam
The Netherlands

Perrin C. White
Department of Pediatrics
University of Texas Southwestern Medical Center
Dallas, Texas
USA

Lei Xu
Department of Biomedical Genetics
University of Rochester Medical Center
Rochester, New York
USA

Simon Yona
Department of Immunology
The Weizmann Institute of Science
Rehovot
Israel
3. LATROPHILIN SIGNALLING IN TISSUE POLARITY AND MORPHOGENESIS

Tobias Langenhan and Andreas P. Russ

Abstract

Introduction .. 37

The Role of Adhesion-GPCRs in Development ... 38

Latrophilins and Tissue Polarity ... 42

Conclusion ... 46

4. GPS PROTEOLYTIC CLEAVAGE OF ADHESION-GPCRs

Hsi-Hsien Lin, Martin Stacey, Simon Yona and Gin-Wen Chang

Abstract

Introduction .. 49

The Molecular Mechanism of GPS Proteolysis ... 52

The Regulation of GPS Proteolysis .. 54

The Role of GPS Proteolysis in Receptor Function and Human Disease .. 54

The Fate and Functional Interaction of the Extracellular and 7TM Subunits following GPS Proteolysis .. 55

Conclusion .. 57

5. THE LATROPHILINS, “SPLIT-PERSONALITY” RECEPTORS

John-Paul Silva and Yuri A. Ushkaryov

Abstract

Introduction .. 59

The Isolation of Latrophilin .. 60

The Latrophilin Family .. 61

Expression Patterns of Latrophilins ... 62

The Structure of Latrophilin ... 64

Latrophilin as a GPCR ... 68

Ligands and Interacting Partners of Latrophilins .. 69

Latrophilin Gene Knockouts .. 71

Latrophilins in Disease .. 72

Conclusion .. 72

6. STUDIES ON THE VERY LARGE G PROTEIN-COUPLED RECEPTOR: FROM INITIAL DISCOVERY TO DETERMINING ITS ROLE IN SENSORINEURAL DEAFNESS IN HIGHER ANIMALS

D. Randy McMillan and Perrin C. White

Abstract

Introduction ... 76

Gene Structure .. 76

Protein Structure .. 79

Gene Expression ... 80

Mice with Mutations in VLGR1 .. 80
CONTENTS

Expression in the Cochlea and Retina ... 81
Conclusion ... 83

7. ADHESION-GPCRs IN THE CNS ... 87
Natalie Strokes and Xianhua Piao

Abstract .. 87
Introduction ... 87
Adhesion-GPCRs in Brain Development ... 89
GPR56 in Brain Development and Malformation ... 90
Conclusion ... 94

8. GPR56 INTERACTS WITH EXTRACELLULAR MATRIX
AND REGULATES CANCER PROGRESSION ... 98
Lei Xu

Abstract .. 98
Introduction ... 98
The Primary Structure of Gpr56 Gene and its Encoded Protein 99
Functions of GPR56 in Cancer ... 101
Signaling Pathways Mediated by GPR56 .. 103
Conclusion ... 105

9. ADHESION-GPCRs IN TUMORIGENESIS .. 109
Gabriela Aust

Abstract .. 109
Databases .. 109
Overview on the Adhesion-GPCR Family .. 110
Group I: Latrophilin-Like (Latrophilin 1-3, ETL) .. 110
Group II: EGF-Like (CD97, EMR1-4) ... 111
Group III: IgG-Like (GPR123, GPR124, GPR125) .. 112
Group IV: CELSR-Like (CELSR 1-3) ... 113
Group V: GPR133 and 144 ... 113
Group VI: GPR110, GPR111, GPR113, GPR115, GPR116 113
Group VII: BAI-Like (BAI 1-3) ... 113
Group VIII: Miscellaneous (GPR56, GPR64, GPR97, GPR112, GPR114, GPR126) ... 116
Ungrouped (GPR128, VLGR1) ... 117
Conclusion ... 117

10. IMMUNITY AND ADHESION-GPCRs ... 121
Simon Yona, Hsi-Hsien Lin and Martin Stacey

Abstract .. 121
Introduction: Adhesion-GPCRs in Immunology ... 121
The EGF-TM7 Family .. 122
Gone Fishing .. 123
BAI1 ... 125
GPR56 .. 125
Conclusion ... 126
11. CD97 IN LEUKOCYTE TRAFFICKING .. 128

Jörg Hamann, Henrike Veninga, Dorien M. de Groot, Lizette Visser,
Claudia L. Hofstra, Paul P. Tak, Jon D. Laman, Annemieke M. Boots
and Hans van Eenennaam

Abstract .. 128
CD97 is a Prototypical EGF-TM7 Receptor .. 129
CD97 Antibody Treatment Inhibits Granulocyte Trafficking 129
CD97 Targeting in Antigen-Driven Disease Models 132
Antibody Treatment versus Gene Targeting .. 134
In Vivo Studies Start to Unveil the CD97 Mechanism of Action 135
Conclusion ... 136

12. THE ROLE OF CD97 IN REGULATING ADAPTIVE
T-CELL RESPONSES .. 138

Ian Spendlove and Ruhcha Sutavani

Abstract .. 138
Introduction: Structure of CD97 and its Interaction with CD55 138
Costimulation of T Cells ... 140
T-Cell Signalling .. 141
Effect on Different T-Cell Populations .. 142
Effects of Complement on CD55 and T Cells ... 145
Conclusion ... 146

AND ITS ROLE IN IMMUNOREGULATION ... 149

Hsi-Hsien Lin, Martin Stacey, Joan Stein-Streilein and Siamon Gordon

Abstract .. 149
Introduction ... 149
Generation and Application of F4/80 mAb: The Phenotypic and Functional
Characterization of Mouse Macrophage Subpopulations 150
Molecular Cloning and Characterization of the F4/80 (Emr1) Gene 151
Generation and Analysis of F4/80-Deficient Animals 153
The Role of F4/80 in Immunoregulation ... 153
Conclusion ... 154

14. SIGNAL TRANSDUCTION MEDIATED THROUGH
ADHESION-GPCRs ... 157

Norikazu Mizuno and Hiroshi Itoh

Abstract .. 157
Difficulties in Studying the Signal Transduction of Adhesion-GPCRs 157
G Protein-Dependent Signaling Pathway of Adhesion-GPCRs 158
Oligomerization of Adhesion-GPCR for Activation 159
Functional Antibodies against Adhesion-GPCRs .. 161
Other Studies that Suggest the Signaling Pathway of Adhesion-GPCRs 162
Complexity of Signal Transduction via Adhesion-GPCRs 163
Conclusion ... 164
15. EMERGING ROLES OF BRAIN-SPECIFIC ANGIOGENESIS INHIBITOR 1 ... 167

Daeho Park and Kodi S. Ravichandran

Abstract .. 167
Introduction ... 167
Initial Identification of BAI1 ... 168
Structural and Functional Domains of BAI1 .. 168
BAI1 as an Engulfment Receptor for Apoptotic Cells .. 170
Role of BAI1 in Glioblastomas .. 173
Other Known Interacting Partners of BAI1 .. 174
Conclusion .. 176

16. ADHESION-GPCRs IN THE MALE REPRODUCTIVE TRACT .. 179

Ben Davies and Christiane Kirchhoff

Abstract .. 179
Introduction .. 179
GPR64 ... 180
GPR124 and GPR125 ... 184
CELSR1-3 ... 185
Other Adhesion-GPCRs ... 185
Conclusion .. 186

APPENDIX: MAMMALIAN ADHESION-GPCRs .. 189

Simon Yona and Martin Stacey

INDEX ... 195