Environmental Radiation Effects on Mammals
Environmental Radiation Effects on Mammals

A Dynamical Modeling Approach
Dedicated to my advisor, N.V. Stepanova
The monograph is devoted to the theoretical studies of radiation effects on mammals. It summarizes the results obtained by the author over the past 30 years, most of them being of high priority. In the course of these studies, a single approach to the modeling of radiation effects on mammals has been elaborated. Specifically, in the framework of the developed deterministic mathematical models, the effects of both acute and chronic irradiation in a wide range of doses and dose rates on vital body systems (hematopoiesis, small intestine, and humoral immunity), as well as on the development of autoimmune diseases, are investigated. The radiation effects on the mortality dynamics in homogeneous and nonhomogeneous (in radiosensitivity) mammalian populations are also studied by making use of the developed stochastic models. The most appealing feature of these mortality models consists of the fact that they account for the intrinsic properties of the exposed organism. Namely, within these models the stochastic biometrical functions are calculated proceeding from statistical characteristics and dynamics of the respective critical body system (hematopoiesis or small intestine).

The performed theoretical investigations contribute to the development of the system and quantitative approaches in radiation biology and ecology. These studies elucidate the major regulatory mechanisms of the damage and recovery processes running in the vital body systems of exposed mammals and reveal the key parameters characterizing the processes. Proposed explanations of a number of nonlinear effects of low-level single/chronic irradiation on the vital body systems, on the organism as a whole, and on a nonhomogeneous mammalian population are of particular theoretical significance, since these effects still have no unambiguous interpretation.

The material presented in the monograph is a matter of interest for practical use, too. In particular, performed investigations of the dynamical models of granulocytopoiesis and thrombocytopoiesis in humans testify to the efficiency of employing these models in the investigation and prediction of effects of space radiation on these major hematopoietic lines. These models, as well as the developed models of other vital body systems (after appropriate identification), could provide a better understanding of the risks to health from the space radiation environment and enable one to evaluate the need for operational applications of countermeasures for astronauts on long-term space missions.
The models of radiation-induced mortality lay the theoretical foundations of a new individual-based approach to radiation risk assessment. These models enable one to predict the mortality dynamics and the average life-span shortening for an individual and for nonhomogeneous (in radiosensitivity) populations exposed to acute and, most importantly, to low-level chronic irradiation. Therefore, the properly identified mortality models could be employed as a tool for estimating the risks for persons subjected to occupational irradiation (power plant employees, radiologists, technicians, and others). This would allow one to carry out more effectively preventive and protective measures among them. Additionally, these models could be used to evaluate the radiation risks for a population residing in contaminated areas. In turn, this would help decision makers to distribute, in an optimal way, the available resources to reduce the hazard for the population. The elaborated models of radiation-induced mortality could also be applied to estimate the risk of long-term irradiation in manned space missions, such as voyages to Mars and lunar colonies.

In this monograph a wide range of fundamental problems in the fields of radiation biology and ecology are investigated in the framework of a single approach by making use of the methods of mathematical modeling. Therefore, the developed methodology of the studies, the elaborated models themselves, and the obtained theoretical results can be of benefit to academic institutions, scientists, and researchers working in the field of mathematical modeling of biological systems, as well as in the fields of radiation biology and ecology. The theoretical investigations presented in the monograph can find wide practical use. In particular, the monograph can be of benefit to aerospace agencies and to corporations that deal with the problems of ensuring the space environmental radiation safety, as well as to practitioners and professionals working in related fields. The monograph can be used as a basis for a lecture course on mathematical modeling in radiation biology and ecology. It can also be of benefit to graduate and postgraduate students of appropriate specializations.

Dubna, Moscow region
Russian Federation
April 2010

Olga Smirnova
Acknowledgments

This book is dedicated to Professor Natalia Vyacheslavovna Stepanova, who was my scientific advisor during my graduate and postgraduate studies at the Faculty of Physics of Moscow State University (MSU) and remained my main teacher throughout her life.

I am indebted to MSU Professors Yury M. Romanovsky and Dmitry S. Chernavsky, who also influenced me in forming my scientific outlook and in choosing the direction and methods of my research.

I am very much obliged to the specialists in space research Professors Juergen Kiefer, Stanley B. Curtis, Boris S. Fedorenko, and Dr. Francis A. Cucinotta for their interest in my investigations, encouragement, valuable discussions, and support.

I am grateful to the specialists in radiation biology Professors Natalia G. Darenskaya, Elena B. Burlakova, Alexander A. Yarilin, Evgeny A. Krasavin, Katharine E. Carr, Dr. Thomas M. Seed, and Dr. Glen I. Reeves for their interest in my investigations and fruitful discussions.

I am also grateful to the specialists in mathematical modeling in biology Professors Galina Y. Riznichenko, Alexey A. Romanukha, Thomas G. Hallam, Marcus Loeffler, Herbert I. Freedman, and Rafael Bravo de la Parra for their interest in my investigations, useful discussions, and support.

My co-authors on a number of publications were specialists in the field of experimental radiobiology and immunology: Professor Morio Yonezawa, Dr. Tatiana M. Zukhbay, Dr. Nikolai I. Rizhov, Dr. Raisa D. Govorun, and Professor Mikhail I. Levi. I thank them for their close collaboration.

I have prepared papers together with Professor Evgeny E. Kovalev and Professor Vadim A. Sakovich. I am indebted to them for valuable discussions and support.
Contents

1 **Introduction** ... 1
 References .. 2

2 **Radiation Effects on the Blood-Forming System** ... 7
 2.1 Introduction ... 7
 2.2 The Essentials of Hematopoiesis ... 8
 2.3 Review of Mathematical Models of the Blood-Forming System .. 8
 2.4 Master Model of Hematopoiesis .. 9
 2.5 Thrombocytopoiesis Dynamics in Mammals Unexposed and Exposed to Acute/Chronic Irradiation ... 15
 2.6 Lymphopoiesis Dynamics in Mammals Unexposed and Exposed to Acute/Chronic Irradiation .. 25
 2.7 Erythropoiesis Dynamics in Mammals Unexposed and Exposed to Acute/Chronic Irradiation ... 34
 2.8 Granulocytopoiesis Dynamics in Mammals Unexposed and Exposed to Acute/Chronic Irradiation .. 40
 2.9 Acquired Radioresistance of Hematopoiesis System after Single Preirradiation 50
 2.10 Acquired Radioresistance of Hematopoiesis System after Chronic Preirradiation 58
 2.11 Thrombocytopoiesis Dynamics in Nonirradiated and Irradiated Humans 64
 2.12 Thrombocytopoiesis Dynamics in Astronauts during Mars Missions 72
 2.13 Granulocytopoiesis Dynamics in Nonirradiated and Irradiated Humans 77
 2.14 Granulocytopoiesis Dynamics in Astronauts during Mars Missions 84
 2.15 Conclusions .. 89
 References .. 92
3 The Small Intestine as a Target for Radiation101
 3.1 Introduction ...101
 3.2 The Essentials of the Small Intestine101
 3.3 Review of Mathematical Models of the Small Intestinal
 Epithelium ..102
 3.4 Dynamical Model of the Small Intestinal Epithelium
 in Nonirradiated Mammals ..104
 3.5 Dynamics of the Small Intestinal Epithelium
 under Chronic Irradiation ...106
 3.6 Dynamics of the Small Intestinal Epithelium after Acute
 Irradiation ...113
 3.7 Conclusions ..116
References ..117

4 Radiation and Humoral Immunity ..121
 4.1 Introduction ...121
 4.2 The Essentials of Immunity ...122
 4.3 Dynamical Model of the Humoral Immune Response
 to a T-independent Antigen in Nonirradiated Mammals124
 4.4 Humoral Immunity in Mammals Exposed to Chronic Irradiation 130
 4.5 Humoral Immunity in Mammals Exposed to Acute Irradiation ...138
 4.6 Conclusions ..144
References ..144

5 Modeling of Autoimmune Processes ...151
 5.1 Introduction ...151
 5.2 The Essentials of Autoimmunity ...151
 5.3 Dynamical Model of Autoimmunity in Nonirradiated Mammals ...152
 5.4 Autoimmune Reactions Induced by Chronic Irradiation157
 5.5 Autoimmune Reactions Induced by Acute Irradiation164
 5.6 Conclusions ..166
References ..167

6 Individual-Based Approach to Radiation Risk Assessment171
 6.1 Introduction ...171
 6.2 Model of Radiation-Induced Mortality
 for a Homogeneous Mammalian Population171
 6.3 Mortality Dynamics in a Homogeneous Population:
 Gastrointestinal Subsyndrome of Acute Radiation Syndrome ...176
 6.4 Mortality Dynamics in a Homogeneous Population:
 Hematopoietic Subsyndrome of Acute Radiation Syndrome182
 6.5 Model of Radiation-Induced Mortality
 for a Nonhomogeneous (in Radiosensitivity) Mammalian Population ..186
6.6 Populations with Normal and Log-Normal Distributions of Specimens in Radiosensitivity Index of Critical System Cells 190
6.7 Mortality Dynamics in a Nonhomogeneous Population: Gastrointestinal Subsyndrome of Acute Radiation Syndrome 194
6.8 Mortality Dynamics in a Nonhomogeneous Population: Hematopoietic Subsyndrome of Acute Radiation Syndrome 200
6.9 Conclusions .. 205
References .. 207

Conclusions .. 211

Index .. 213