Preface

Systems biology takes a holistic view on biology and aims at elucidating design principles of whole biological systems rather than characterizing individual molecules or single events. It is generally believed that systems biology will transform biology from a descriptive to a predictive science, making it possible to understand, explain, and eventually engineer complex biological systems. In the past decades, we witnessed burgeoning development of various fields that mutually complement each other and together define the scope and methods of systems biology. This young and rapidly growing consortium of disciplines defies all attempts at rigid definition of its purpose and boundaries while continuing to evolve and develop new experimental tools and theoretical paradigms. Perhaps, the most definitive characteristic feature of systems biology is that it is a fundamentally interdisciplinary science that became a point of fusion of the traditional experimental biology with physics, chemistry, mathematics, computer science, and engineering. Inevitable cross-talk of distinct cultures, often a tumultuous and never an easy process, brought about the emergence of a new culture of modern quantitative biology.

The most recent advances and new developments in systems biology were presented and actively discussed at the 11th International Conference on Systems Biology which took place on 10–16 October, 2010 in Edinburgh. This meeting marked the tenth anniversary of the increasingly popular series of conferences initiated by Hiroaki Kitano in 2000 in Tokyo. The meeting in Edinburgh attracted the largest yet attendee number, which is sure to continue growing in the years to come. Reflecting the highly diverse interdisciplinary nature of systems biology, the scientific programme of the Conference featured eight plenary and 16 parallel sessions aiming at the fair representation of various contributing fields. As has become the tradition over the decade of ICSB conferences, particular attention was given to the developments in genomics, proteomics, metabolomics as well as mathematical modeling and computational tools. Special sessions were dedicated to the recent advances in neurobiology, biological rhythms and circadian clocks, and biological noise and cellular decision making. Strong emphasis was also given to the practical applications of systems biology in medicine, biotechnology, and
pharmaceutical industry. Following the trend of the previous meetings, ICSB 2010 witnessed continuously increasing coalescence of experimental and theoretical approaches that resulted in exciting, truly systems research projects presented at the Conference.

The present collection of articles has emerged from the contributions provided by the speakers of ICSB 2010 as well as by other leaders of systems biology who could not attend the meeting. As the biological systems themselves, this volume is the result of self-organization. Since each contributor chose the topic of their chapter independently from the others, the scope of this volume is a faithful and unbiased replica of the entire breadth and diversity of systems biology. At the same time, individual contributions naturally grouped together revealing the particularly exigent research directions that presently attract the most attention. These emergent clusters defined the sections of the present volume. Thus, traditionally strong interest remains focused on the identification, analysis, and modeling of networks that represent causative, correlative, and other relationships between various biological entities. Contributions by B. Andrews, J. Saez-Rodrigues, D. Armstrong, and their colleagues consider the use of the proteome-wide datasets as well as the development of high-throughput techniques for their acquisition. Chapters by B. Kholodenko and W. Kolch, E. Feliu, S. Schnell and their co-workers are devoted to the analysis and modeling of intracellular signaling networks. H. Kaltenbach and J. Stelling discuss in more abstract terms the theoretical aspects of modularity that is characteristic of biological networks.

Much interest is presently devoted to the understanding of cellular decision making, such as response and adaption to the environmental perturbations, cellular differentiation, and programmed cell death. Given the importance of these fundamental biological processes for the treatment of cancer and stem-cell-based regenerative technologies, to name just a few applications, this interest is well justified. Section 2 starts with a provocative discussion feature by D. Bray who posits that biological organisms, as simple as unicellular bacteria, carry acquired throughout the evolution information on optimal environmental conditions. The contributions by A. Levchenko, J. Fisher, D. Lutter, and others focus on cellular differentiation and apoptosis. Together they suggest that systems biology is finally getting into the position to tackle these exciting and exceptionally complex problems.

Section 3 considers spatial and temporal aspects of intracellular dynamics. Thus, D. Vavylonis and colleagues and A. Carlsson discuss systems properties of actin cytoskeleton, while M. Enculescu and M. Falke review modeling of morphodynamic phenotypes and dynamic regimes of cellular locomotion. More technically oriented contributions that present novel computational algorithms, software tools and theoretical methods are grouped into Sect. 4. Here E. Balsa-Canto, I. Sbalzarini, and their colleagues discuss global optimization and parameter identification in stochastic reaction networks. M. Blinov and I. Moraru present the rule-based modeling approaches that allow building larger models of complex reaction networks.
To conclude the volume, Sect. 5 discusses a broad spectrum of systems biology applications in medicine, biotechnology, and pharmaceutical industry. Discussion features by R. Phair, L. Kupfer, N. Benson, and their colleagues present the views from inside the industry on the advantages and pitfalls associated with the use of systems biology in drug design and development. Other contributors showcase practical applications of systems methods to the analysis of patient data and typical problems arising in biotechnology of microorganisms and livestock.

Finally, the Editors would like to express their sincere gratitude to Mrs. Fiona Clark who provided invaluable administrative support without which the effort of assembling this volume would be impossible.

Andrew B. Goryachev
Igor I. Goryanin
Contents

Part I Multiscale Biological Networks: Identification, Modeling and Analysis

1. **Modular Analysis of Biological Networks** 3
 Hans-Michael Kaltenbach and Jörg Stelling

2. **Modeling Signaling Networks Using High-throughput Phospho-proteomics** .. 19
 Camille Terfve and Julio Saez-Rodriguez

3. **An Integrated Bayesian Framework for Identifying Phosphorylation Networks in Stimulated Cells** 59
 Tapesh Santra, Boris Kholodenko, and Walter Kolch

4. **Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels** .. 81
 Elisenda Feliu, Michael Knudsen, and Carsten Wiuf

5. **Heterogeneous Biological Network Visualization System: Case Study in Context of Medical Image Data** 95
 Erno Lindfors, Jussi Mattila, Peddinti V. Gopalacharyulu, Antti Pesonen, Jyrki Lötjönen, and Matej Orešič

6. **Evolution of the Cognitive Proteome: From Static to Dynamic Network Models** .. 119
 J. Douglas Armstrong and Oksana Sorokina

7. **Molecular Systems Biology of Sic1 in Yeast Cell Cycle Regulation Through Multiscale Modeling** 135
 Matteo Barberis
8 Proteome-Wide Screens in *Saccharomyces cerevisiae* Using the Yeast GFP Collection ... 169
Yolanda T. Chong, Michael J. Cox, and Brenda Andrews

9 Unraveling the Complex Regulatory Relationships Between Metabolism and Signal Transduction in Cancer 179
Michelle L. Wynn, Sofia D. Merajver, and Santiago Schnell

Part II Cellular Decision Making: Adaptation, Differentiation and Death

10 The Cell as a Thermostat: How Much does it Know? 193
Dennis Bray

11 Stem Cell Differentiation as a Renewal-Reward Process: Predictions and Validation in the Colonic Crypt 199
Kiran Gireesan Vanaja, Andrew P. Feinberg, and Andre Levchenko

12 A Dynamic Physical Model of Cell Migration, Differentiation and Apoptosis in *Caenorhabditis elegans* 211
Antje Beyer, Ralf Eberhard, Nir Piterman, Michael O. Hengartner, Alex Hajnal, and Jasmin Fisher

13 A Modular Model of the Apoptosis Machinery 235
E.O. Kutumova, I.N. Kiselev, R.N. Sharipov, I.N. Lavrik, and Fedor A. Kolpakov

14 An Ensemble Approach for Inferring Semi-quantitative Regulatory Dynamics for the Differentiation of Mouse Embryonic Stem Cells Using Prior Knowledge 247
Dominik Lutter, Philipp Bruns, and Fabian J. Theis

15 Cell Death and Life in Cancer: Mathematical Modeling of Cell Fate Decisions .. 261
Andrei Zinovyev, Simon Fourquet, Laurent Tournier, Laurence Calzone, and Emmanuel Barillot

16 Theoretical Aspects of Cellular Decision-Making and Information-Processing ... 275
Tetsuya J. Kobayashi and Atsushi Kamimura

17 Zooming in on Yeast Osmoadaptation 293
Clemens Kühn and Edda Klipp
Part III Spatial and Temporal Dimensions of Intracellular Dynamics

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Receptor Dynamics in Signaling</td>
<td>Verena Becker, Jens Timmer, and Ursula Klingmüller</td>
<td>313</td>
</tr>
<tr>
<td>19</td>
<td>A Systems-Biology Approach to Yeast Actin Cables</td>
<td>Tyler Drake, Eddy Yusuf, and Dimitrios Vavylonis</td>
<td>325</td>
</tr>
<tr>
<td>20</td>
<td>Modeling Morphodynamic Phenotypes and Dynamic Regimes of Cell Motion</td>
<td>Mihaela Enculescu and Martin Falcke</td>
<td>337</td>
</tr>
<tr>
<td>21</td>
<td>Time-Structure of the Yeast Metabolism In vivo</td>
<td>Kalesh Sasidharan, Masaru Tomita, Miguel Aon, David Lloyd, and Douglas B. Murray</td>
<td>359</td>
</tr>
<tr>
<td>22</td>
<td>Coarse Graining Escherichia coli Chemotaxis: From Multi-flagella Propulsion to Logarithmic Sensing</td>
<td>Tine Curk, Franziska Matthäus, Yifat Brill-Karniely, and Jure Dobnikar</td>
<td>381</td>
</tr>
<tr>
<td>23</td>
<td>Self-Feedback in Actin Polymerization</td>
<td>Anders E. Carlsson</td>
<td>397</td>
</tr>
</tbody>
</table>

Part IV Computational Tools, Algorithms and Theoretical Methods for Systems Biology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Mathematical Modeling of the Human Energy Metabolism Based on the Selfish Brain Theory</td>
<td>Matthias Chung and Britta Göbel</td>
<td>425</td>
</tr>
<tr>
<td>26</td>
<td>Identification of Sensitive Enzymes in the Photosynthetic Carbon Metabolism</td>
<td>Renato Umeton, Giovanni Stracquadanio, Alessio Papini, Jole Costanza, Pietro Liò, and Giuseppe Nicosia</td>
<td>441</td>
</tr>
<tr>
<td>27</td>
<td>Formal Methods for Checking the Consistency of Biological Models</td>
<td>Allan Clark, Vashti Galpin, Stephen Gilmore, Maria Luisa Guerriero, and Jane Hillston</td>
<td>461</td>
</tr>
</tbody>
</table>
28 Global Parameter Identification of Stochastic Reaction Networks from Single Trajectories .. 477
Christian L. Müller, Rajesh Ramaswamy, and Ivo F. Sbalzarini

29 A Systems Biology View of Adaptation in Sensory Mechanisms 499
Pablo A. Iglesias

30 Leveraging Modeling Approaches: Reaction Networks and Rules ... 517
Michael L. Blinov and Ion I. Moraru

Part V Applications of Systems Biology in Medicine, Biotechnology and Pharmaceutical Industry

31 Why and How to Expand the Role of Systems Biology in Pharmaceutical Research and Development 533
Robert D. Phair

32 Multiscale Mechanistic Modeling in Pharmaceutical Research and Development .. 543
Lars Kuepfer, Jörg Lippert, and Thomas Eissing

33 Re-analysis of Bipolar Disorder and Schizophrenia Gene Expression Complements the Kraepelinian Dichotomy 563
Kui Qian, Antonio Di Lieto, Jukka Corander, Petri Auvinen, and Dario Greco

34 Bringing Together Models from Bottom-Up and Top-Down Approaches: An Application for Growth of Escherichia coli on Different Carbohydrates ... 579
Andreas Kremling

35 A Differential Equation Model to Investigate the Dynamics of the Bovine Estrous Cycle ... 597
H.M.T. Boer, C. Stötzel, S. Röblitz, and H. Woelders

36 Reducing Systems Biology to Practice in Pharmaceutical Company Research; Selected Case Studies 607
N. Benson, L. Cucurull-Sanchez, O. Demin, S. Smirnov, and P. van der Graaf

37 System-Scale Network Modeling of Cancer Using EPoC 617
Tobias Abenius, Rebecka Jörnsten, Tereisa Kling, Linnéa Schmidt, José Sánchez, and Sven Nelander
38 Early Patient Stratification and Predictive Biomarkers in Drug Discovery and Development .. 645
Daphna Laifenfeld, David A. Drubin, Natalie L. Catlett,
Jennifer S. Park, Aaron A. Van Hooser, Brian P. Frushour,
David de Graaf, David A. Fryburg, and Renée Deehan

39 Biomedical Atlases: Systematics, Informatics and Analysis 655
Richard A. Baldock and Albert Burger

Index ... 679
Contributors

Tobias Abenius Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, 412 96 Gothenburg, Sweden

Brenda Andrews The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada

Miguel Aon Johns Hopkins University, School of Medicine, 720 Rutland Avenue, 1059 Ross Building, Baltimore, MD 21205, USA

J. Douglas Armstrong School of Informatics, University of Edinburgh, Edinburgh, UK

Petri Auvinen Institute of Biotechnology, University of Helsinki, Helsinki, Finland

Richard A. Baldock MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK

Eva Balsa-Canto (Bio)Process Engineering Group, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain

J.R. Banga (Bio)Process Engineering Group, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain

Matteo Barberis Humboldt University Berlin, Institute for Biology, Invalidenstr. 42, 10115 Berlin, Germany
Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany

Emmanuel Barillot U900 INSERM/Institut Curie/Ecole de Mines, Institut Curie, 26 rue d’Ulm, Paris 75005, France

Verena Becker Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
Bioquant, Heidelberg University, Germany Present address: Department of Systems Biology, Harvard Medical School, Boston, MA, USA
N. Benson Modelling and Simulation, Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research, Pfizer Ltd., Sandwich CT13 9NJ, UK

Antje Beyer Department of Genetics, University of Cambridge, Cambridge, UK

Michael L. Blinov Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA

H.M.T. Boer Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands
Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands

Dennis Bray Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

Yifat Brill-Karniely Department of Chemistry, University of Cambridge, Cambridge, UK

Philipp Bruns Institute of Bioinformatics and Systems Biology, CMB, Helmholtz Zentrum München, Munich, Germany
Department of Surgery, Technische Universität München, Munich, Germany

Albert Burger MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
Department of Computer Science, Heriot-Watt University, Edinburgh EH14 4AS, UK

Laurence Calzone U900 INSERM/Institut Curie/Ecole de Mines, Institut Curie, 26 rue d’Ulm, Paris 75005, France

Anders E. Carlsson Department of Physics, Washington University, St. Louis, MO 63130, USA

Natalie L. Catlett Selventa, One Alewife Center, Cambridge, MA 02140, USA

Yolanda T. Chong The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada

Matthias Chung Department of Mathematics, Texas State University, 601 University Drive, San Marcos, TX 78666, USA

Allan Clark Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh EH9 3JU, Scotland, UK

Jukka Corander Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

Jole Costanza University of Catania, Viale A. Doria 6, Catania, CT 95125, Italy

Michael J. Cox The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, Canada
L. Cucurull-Sanchez Modelling and Simulation, Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research, Pfizer Ltd., Sandwich, CT13 9NJ, UK

Tine Curk Department of Chemistry, University of Cambridge, Cambridge, UK
Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia

Renée Deehan Selventa, One Alewife Center, Cambridge, MA 02140, USA

O. Demin Institute for Systems Biology, Leninskie Gori, Moscow 11992, Russia

Jure Dobnikar Department of Chemistry, University of Cambridge, Cambridge, UK
Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia

Tyler Drake Department of Physics, Lehigh University, Bethlehem, PA 18015, USA

David A. Drubin Selventa, One Alewife Center, Cambridge, MA 02140, USA

Ralf Eberhard Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

J.A. Egea Department of Applied Mathematics and Statistics, Technical University of Cartagena (UPCT), Cartagena, Spain

Thomas Eissing Systems Biology and Computational Solutions, Bayer Technology Services GmbH, Building 9115, 51368 Leverkusen, Germany

Mihaela Enculescu Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

Martin Falcke Mathematical Cell Physiology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany

Andrew P. Feinberg Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA

Elisenda Feliu Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark

A. Fernandez-Villaverde (Bio)Process Engineering Group, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain

Jasmin Fisher Microsoft Research, Cambridge, UK

Simon Fourquet U900 INSERM/Institut Curie/Ecole de Mines, Institut Curie, 26 rue d’Ulm, Paris 75005, France

Brian P. Frushour Selventa, One Alewife Center, Cambridge, MA 02140, USA

David A. Fryburg Selventa, One Alewife Center, Cambridge, MA 02140, USA
Vashti Galpin Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH8 9AB, Scotland, UK

Stephen Gilmore Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh EH9 3JU, Scotland, UK

Britta Göbel Graduate School for Computing in Medicine and Life Sciences, Institute of Mathematics and Image Computing, University of Lübeck, Maria-Goeppert-Strasse 1a, 23562 Lübeck, Germany

Peddinti V. Gopalacharyulu VTT Technical Research Centre of Finland, Tietotie 2, Espoo, Finland

David de Graaf Selventa One Alewife Center, Cambridge, MA 02140, USA

P. van der Graaf Pfizer, Pharmacometrics, Global Clinical Pharmacology, Walton Oaks, KT20 7NS, UK

Dario Greco Department of Bioscience and Nutrition, Karolinska Institutet, 141 83 Huddinge, Stockholm, Sweden

Maria Luisa Guerriero Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh EH9 3JU, Scotland, UK

Alex Hajnal Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

Michael O. Hengartner Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

G.M. de Hijas-Liste (Bio)Process Engineering Group, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain

Jane Hillston Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh EH9 3JU, Scotland, UK

Aaron A. Van Hooser Selventa, One Alewife Center, Cambridge, MA 02140, USA

Pablo A. Iglesias Department of Electrical and Computer Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

Rebecka Jörnsten Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, 412 96 Gothenburg, Sweden

Hans-Michael Kaltenbach Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland

Atsushi Kamimura Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan

Boris Kholodenko Systems Biology Ireland, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
I.N. Kiselev Institute of Systems Biology, Ltd, Novosibirsk, Russia
Design Technological Institute of Digital Techniques SB RAS, Novosibirsk, Russia

Teresia Kling Cancer Center Sahlgrenska, Institute of Medicine, Box 425, 415 30 Gothenburg, Sweden

Ursula Klingmüller Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany; Bioquant, Heidelberg University, Germany

Edda Klipp Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany

Michael Knudsen Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
Centre for Membrane Pumps in Cells and Disease (PUMPKIN), Aarhus University, Aarhus, Denmark

Tetsuya J. Kobayashi Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan

Walter Kolch Systems Biology Ireland, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland

Fedor A. Kolpakov Institute of Systems Biology, Ltd, Novosibirsk, Russia
Design Technological Institute of Digital Techniques SB RAS, Novosibirsk, Russia

Andreas Kremling Systems Biotechnology, Technical University of München, München, Germany

Lars Kuepfer Systems Biology and Computational Solutions, Bayer Technology Services GmbH, Building 9115, 51368 Leverkusen, Germany

Clemens Kühn Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany

E.O. Kutumova Institute of Systems Biology, Ltd, Novosibirsk, Russia
Design Technological Institute of Digital Techniques SB RAS, Novosibirsk, Russia

Daphna Laifenfeld Selventa, One Alewife Center, Cambridge, MA 02140, USA

I.N. Lavrik German Cancer Research Center (DKFZ), Heidelberg, Germany

Andre Levchenko Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

Antonio Di Lieto Neuroscience Centre, University of Helsinki, Helsinki, Finland

Erno Lindfors VTT Technical Research Centre of Finland, Tietotie 2, Espoo, Finland
Pietro Liò University of Cambridge, William Gates Bldg, 15 J J Thomson Avenue, Cambridge CB3 0FD, UK
Jörg Lippert Systems Biology and Computational Solutions, Bayer Technology Services GmbH, Building 9115, 51368 Leverkusen, Germany
David Lloyd Microbiology, School of Biosciences, Cardiff University, Main Building, P.O. Box 915 Cardiff CF10 3AT, Wales, UK
Jyrki Lötjönen VTT Technical Research Centre of Finland, Tietotie 2, Espoo, Finland
Dominik Lutter Institute of Bioinformatics and Systems Biology, CMB, Helmholtz Zentrum München, Munich, Germany
Franziska Matthäus Center for Modeling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Heidelberg, Germany
Jussi Mattila VTT Technical Research Centre of Finland, Tietotie 2, Espoo, Finland
Sofia D. Merajver Department of Internal Medicine and Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
Ion I. Moraru Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
Christian L. Müller Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich, CH-8092 Zurich, Switzerland
Douglas B. Murray Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka City, Yamagata 997-0017, Japan
Sven Nelander Cancer Center Sahlgrenska, Institute of Medicine, Box 425, 415 30 Gothenburg, Sweden
Giuseppe Nicosia University of Catania, Viale A. Doria 6, Catania, CT 95125, Italy
Matej Orešič VTT Technical Research Centre of Finland, Tietotie 2, Espoo, Finland
Alessio Papini University of Florence, Via La Pira, 4, Firenze, FI I-50121 Italy
Jennifer S. Park Selventa, One Alewife Center, Cambridge, MA 02140, USA
Antti Pesonen VTT Technical Research Centre of Finland, Tietotie 2, Espoo, Finland
Robert D. Phair Integrative Bioinformatics Inc., Los Altos, CA 94024, USA
Nir Piterman Department of Computer Science, University of Leicester, Leicester, UK
Kui Qian Institute of Biotechnology, University of Helsinki, Helsinki, Finland

Rajesh Ramaswamy Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich, CH-8092 Zurich, Switzerland

S. Röblitz Department of Numerical Analysis and Modeling, Computational Systems Biology Group, Zuse Institute Berlin (ZIB), Berlin, Germany

Julio Saez-Rodriguez EMBL-EBI and European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany

José Sánchez Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, 412 96 Gothenburg, Sweden

Tapesh Santra Systems Biology Ireland, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland

Kalesh Sasidharan Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka City, Yamagata 997-0017, Japan

Ivo F. Sbalzarini Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich, CH-8092 Zurich, Switzerland

Linnéa Schmidt Cancer Center Sahlgrenska, Institute of Medicine, Box 425, 415 30 Gothenburg, Sweden

Santiago Schnell Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA

R.N. Sharipov Institute of Systems Biology, Ltd, Novosibirsk, Russia

S. Smirnov Institute of Systems Biology, Leninskie Gori, Moscow 11992, Russia

Oksana Sorokina School of Informatics, University of Edinburgh, Edinburgh, UK

Jörg Stelling Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland

C. Stötzel Department of Numerical Analysis and Modeling, Computational Systems Biology Group, Zuse Institute Berlin (ZIB), Berlin, Germany

Giovanni Stracquadanio The Johns Hopkins University, 217 Clark Hall, Baltimore, MD 21218, USA

Camille Terfve European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK

Fabian J. Theis Institute of Bioinformatics and Systems Biology, CMB, Helmholtz Zentrum München, Munich, Germany
Jens Timmer BIOSS Centre for Biological Signalling Studies, Freiburg Institute for Advanced Studies, Institute of Physics, Center for Systems Biology, University of Freiburg, Freiburg, Germany

Masaru Tomita Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka City, Yamagata 997-0017, Japan

Laurent Tournier INRA, Unit MIG (Mathématiques, Informatique et Génome), Domaine Vilvert, Jouy en Josas 78350, France

Renato Umeton Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Kiran Gireesan Vanaja Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

Dimitrios Vavylonis Department of Physics, Lehigh University, Bethlehem, PA 18015, USA

Carsten Wiuf Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
Centre for Membrane Pumps in Cells and Disease (PUMPKIN), Aarhus University, Aarhus, Denmark

H. Woelders Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad, The Netherlands

Michelle L. Wynn Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA

Eddy Yusuf Physics Department, Surya College of Education, Surya Research and Education (SURE) Center, Jln. Scientia Boulevard U7, Gading Serpong, Tangerang 15233, Indonesia

Andrei Zinovyev U900 INSERM/Institut Curie/Ecole de Mines, Institut Curie, 26 rue d’Ulm, Paris 75005, France