Software Automatic Tuning
Software Automatic Tuning

From Concepts to State-of-the-Art Results
Preface

Software automatic tuning is a technology paradigm enabling software adaptation to a variety of computational conditions. Originating from the stream of research works on high performance computing, it is considered to be the most promising approach to the required performance advancements on the next generation supercomputing platforms. Also, as its effectiveness is widely recognized, its scope is expanding from scientific and engineering computations to general purpose computations.

This book is a fruit of international collaboration developed in iWAPT workshop series, where iWAPT stands for International Workshop on Automatic Performance Tuning. The first workshop (iWAPT 2006) has been held in the University of Tokyo on September 12, 2006. It was a 1-day workshop with two invited presentations from USA and four invited presentations from Japan. iWAPT 2007 was a 2-day workshop with three invited presentations, seven refereed oral presentations, and eight poster presentations, held at the University of Tokyo. In 2008, iWAPT was held in conjunction with IEEE Cluster 2008 at Tsukuba, with two invited presentations and seven refereed oral presentations. iWAPT 2009 was a 2-day workshop with two invited presentations seven refereed oral presentations and four poster presentations, held at the University of Tokyo. iWAPT 2010 will be held in conjunction with VECPAR at Berkeley, CA, USA iWAPT is now lead by International Steering Committee, where five members are from Japan, four from USA, and one from Europe (see http://www.iwapt.org).

This book consists of 20 chapters that encompass almost all the areas of automatic tuning research: matrix kernels, FFT, matrix decompositions, iterative solvers, numerical library, scientific computing, GPGPU, parallel processing, autotuning framework, mathematical methods of autotuning, programming languages, and compiler technologies. The first chapter is an introduction to software automatic tuning, written by the editors. Six chapters are invited papers. Two of them are written by invited speakers of iWAPT workshops, and four of them are by members of organizing committee of iWAPT workshops. Thirteen chapters are peerreviewed contributed papers. Six come from iWAPT 2009, two from iWAPT 2007, and the other five papers are newly submitted for this publication. We arrange the chapters in the order of topics, rather than in the order of origins.
The editors appreciate the contributions of the authors of the chapters and the
organizers, presenters and participants of the iWAPT workshop series. We are es-
pecially grateful to R. Clint Whaley for their invaluable efforts for this publication.
We are also thankful to Charles Glaser and Amanda Davis of Springer USA for their
help.

We sincerely hope that this book contributes the progress of software automatic
tuning technology and world’s welfare through information technology.

Tokyo, Japan Ken Naono
St Paul, MN, USA Keita Teranishi
Newark, DE, USA John Cavazos
Tokyo, Japan Reiji Suda
Contents

Part I Introduction

1 Software Automatic Tuning: Concepts and State-of-the-Art
Results ... 3
Reiji Suda, Ken Naono, Keita Teranishi, and John Cavazos

Part II Achievements in Scientific Computing

2 ATLAS Version 3.9: Overview and Status 19
R. Clint Whaley

3 Autotuning Method for Deciding Block Size Parameters
in Dynamically Load-Balanced BLAS .. 33
Yuta Sawa and Reiji Suda

4 Automatic Tuning for Parallel FFTs.. 49
Daisuke Takahashi

5 Dynamic Programming Approaches to Optimizing
the Blocking Strategy for Basic Matrix Decompositions 69
Yusaku Yamamoto and Takeshi Fukaya

6 Automatic Tuning of the Division Number in the Multiple
Division Divide-and-Conquer for Real Symmetric
Eigenproblem .. 87
Yusuke Ishikawa, Junichi Tamura, Yutaka Kuwajima,
and Takaomi Shigehara

7 Automatically Tuned Mixed-Precision Conjugate
Gradient Solver ...103
Serban Georgescu and Hiroshi Okuda
8 **Automatically Tuned Sparse Eigensolvers**121
Ken Naono, Takao Sakurai, and Masashi Egi

9 **Systematic Performance Evaluation of Linear Solvers Using Quality Control Techniques** ..135
Shoji Itoh and Masaaki Sugihara

10 **Application of Alternating Decision Trees in Selecting Sparse Linear Solvers** ..153
Sanjukta Bhowmick, Victor Eijkhout, Yoav Freund, Erika Fuentes, and David Keyes

11 **Toward Automatic Performance Tuning for Numerical Simulations in the SILC Matrix Computation Framework**175
Tamito Kajiyama, Akira Nukada, Reiji Suda, Hidehiko Hasegawa, and Akira Nishida

12 **Exploring Tuning Strategies for Quantum Chemistry Computations** ...193
Lakshminarasimhan Seshagiri, Meng-Shiou Wu, Masha Sosonkina, and Zhao Zhang

13 **Automatic Tuning of CUDA Execution Parameters for Stencil Processing** ..209
Katsuto Sato, Hiroyuki Takizawa, Kazuhiko Komatsu, and Hiroaki Kobayashi

14 **Static Task Cluster Size Determination in Homogeneous Distributed Systems** ..229
Hidehiro Kanemitsu, Gilhyon Lee, Hidenori Nakazato, Takashige Hoshiai, and Yoshiyori Urano

Part III **Evolution to a General Paradigm**

15 **Algorithmic Parameter Optimization of the DFO Method with the OPAL Framework** ..255
Charles Audet, Cong-Kien Dang, and Dominique Orban

16 **A Bayesian Method of Online Automatic Tuning**275
Reiji Suda

17 **ABCLibScript: A Computer Language for Automatic Performance Tuning** ..295
Takahiro Katagiri
18 Automatically Tuning Task-Based Programs for Multicore Processors ..315
 Jin Zhou and Brian Demsky

19 Efficient Program Compilation Through Machine Learning Techniques335
 Gennady Pekhimenko and Angela Demke Brown

20 Autotuning and Specialization: Speeding up Matrix Multiply for Small Matrices with Compiler Technology353
 Jaewook Shin, Mary W. Hall, Jacqueline Chame, Chun Chen, and Paul D. Hovland

Index ...371
Contributors

Charles Audet Department of Mathematics and Industrial Engineering,
Ecole Polytechnique, Montréal, QC, Canada
and
GERAD, Montréal, QC, Canada, charles.audet@gerad.ca

Sanjukta Bhowmick Department of Computer Science, University of Nebraska
at Omaha, sbhowmick@unomaha.edu

Angela Demke Brown University of Toronto, Canada M5S 2E4, demke@cs.toronto.edu

John Cavazos University of Delaware, Newark, DE, USA, cavazos@cis.udel.edu

Jacqueline Chame Information Sciences Institute, University of Southern
California, Marina del Rey, CA 90292, USA, jchame@isi.edu

Chun Chen School of Computing, University of Utah, Salt Lake City, UT 84112,
USA, chunchen@cs.utah.edu

Cong-Kien Dang GERAD, Montréal, QC, Canada, kien.cong.dang@gerad.ca

Brian Demsky University of California, Irvine, CA, USA, bdemsky@uci.edu

Masashi Egi Central Research Laboratory, Hitachi Ltd., 1-280, Higashi-
koigakubo, Kokubunji, Tokyo, Japan, masashi.egi.zj@hitachi.com

Victor Eijkhout Advanced Computing Center, The University of Texas at Austin,
eijkhout@tacc.utexas.edu

Yoav Freund Department of Computer Science and Engineering, University
of California, San Diego, yfreund@ucsd.edu

Erika Fuentes Microsoft Inc., efuentes@cs.utk.edu

Takeshi Fukaya Nagoya University, Nagoya, Aichi 464-8603, Japan,
t-fukaya@na.cse.nagoya-u.ac.jp

Serban Georgescu Department of Quantum Engineering and Systems Science,
The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan,
serban@nihonbashi.race.u-tokyo.ac.jp
Mary W. Hall School of Computing, University of Utah, Salt Lake City, UT 84112, USA, mhall@cs.utah.edu

Hidehiko Hasegawa University of Tsukuba, Ibaraki 305–8550, Japan, hasegawa@slis.tsukuba.ac.jp

Takashige Hoshiai Graduate School of Global Information and Telecommunication Studies, Waseda University, 1-3-10, Nishiwaseda, Shinjyuku, Tokyo, Japan, hoshiai@pcl.cs.waseda.jp

Paul D. Hovland Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA, hovland@mcs.anl.gov

Yusuke Ishikawa Graduate School of Science and Engineering, Saitama University, Saitama, Japan, s09mm305@mail.saitama-u.ac.jp

Shoji Itoh Information Technology Center, The University of Tokyo, Yayoi 2-11-16, Bunkyo, Tokyo 113-8658, Japan, itosho@cc.u-tokyo.ac.jp

Tamito Kajiyama CITI, DI/FCT, Universidade Nova de Lisboa, Caparica 2829–516, Portugal, t.kajiyama@di.fct.unl.pt

Hidehiro Kanemitsu Graduate School of Global Information and Telecommunication Studies, Waseda University, 1-3-10, Nishiwaseda, Shinjyuku, Tokyo, Japan, kanemih@ruri.waseda.jp

Takahiro Katagiri Information Technology Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, Japan, katagiri@cc.u-tokyo.ac.jp

David Keyes Department of Applied Physics and Applied Mathematics, Columbia University and King Abdullah University of Science and Technology, david.keyes@kaust.edu.sa

Hiroaki Kobayashi Cyberscience Center, Tohoku University, 6-3 Aramaki-aza-aoba, Aoba, Sendai 980-8578, Japan, koba@isc.tohoku.ac.jp

Kazuhiko Komatsu Cyberscience Center, Tohoku University, 6-3 Aramaki-aza-aoba, Aoba, Sendai 980-8578, Japan, komatsu@sc.isc.tohoku.ac.jp

Yutaka Kuwajima Graduate School of Science and Engineering, Saitama University, Saitama, Japan, kuwa@mail.saitama-u.ac.jp

Gilhyon Lee Graduate School of Global Information and Telecommunication Studies, Waseda University, 1-3-10, Nishiwaseda, Shinjyuku, Tokyo, Japan, ghlee@akane.waseda.jp

Hidenori Nakazato Graduate School of Global Information and Telecommunication Studies, Waseda University, 1-3-10, Nishiwaseda, Shinjyuku, Tokyo, Japan, nakazato@waseda.jp

Ken Naono Central Research Laboratory, Hitachi Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo, Japan, ken.naono.aw@hitachi.com
Contributors

Akira Nishida Kyushu University, Fukuoka 812–8581, Japan, nishida@cc.kyushu-u.ac.jp

Akira Nukada Tokyo Institute of Technology, Tokyo 152–8552, Japan, nukada@smg.is.titech.ac.jp

Hiroshi Okuda Research into Artifacts, Center for Engineering (RACE), The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8568, Japan, okuda@race.u-tokyo.ac.jp

Dominique Orban Department of Mathematics and Industrial Engineering, École Polytechnique, Montréal, QC, Canada

and

GERAD, Montréal, QC, Canada, dominique.orban@gerad.ca

Gennady Pekhimenko Carnegie Mellon University, 5000 Forbes Ave, GHC, Pittsburgh PA 15213, gpekhome@cs.cmu.edu

Takao Sakurai Central Research Laboratory, Hitachi Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo, Japan, takao.sakurai.ju@hitachi.com

Katsuto Sato Graduate School of Information Sciences, Tohoku University, 6-3 Aramaki-aza-aoba, Aoba, Sendai 980-8578, Japan, katuto@sc.isc.tohoku.ac.jp

Yuta Sawa Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan, yuta.sawa.eh@hitachi.com

Lakshminarasimhan Seshagiri Scalable Computing Laboratory, The Ames Laboratory, US DoE, Ames, IA 50011, USA, sln@scl.ameslab.gov

Takaomi Shigehara Graduate School of Science and Engineering, Saitama University, Saitama, Japan, sigehara@nc.ics.saitama-u.ac.jp

Jaewook Shin Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA, jaewook@mcs.anl.gov

Masha Sosonkina Scalable Computing Laboratory, The Ames Laboratory, US DoE, Ames, IA 50011, USA, masha@scl.ameslab.gov

Reiji Suda Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

and

CREST, JST, Tokyo, Japan, reiji@is.s.u-tokyo.ac.jp

Masaaki Sugihara Graduate School of Information Science and Technology, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8656, Japan, m_sugihara@mist.i.u-tokyo.ac.jp

Daisuke Takahashi Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan, daisuke@cs.tsukuba.ac.jp
Hiroyuki Takizawa Graduate School of Information Sciences,
Tohoku University, 4F, 6-3 Aramaki-aza-aoba, Aoba-ku, Sendai, 980-8578, Japan,
tacky@isc.tohoku.ac.jp

Junichi Tamura Graduate School of Science and Engineering,
Saitama University, Saitama, Japan, s08mm318@mail.saitama-u.ac.jp

Keita Teranishi Cray Inc., Suite # 210, 380 Jackson st., St Paul, MN 55101, USA,
keita@cray.com

Yoshiyori Urano Graduate School of Global Information and Telecommunication
Studies, Waseda University, 1-3-10, Nishiwaseda, Shinjyuku, Tokyo, Japan,
muranolt@waseda.jp

R. Clint Whaley Department of Computer Science, Univ of TX, San Antonio,
TX 78249, whaley@cs.utsa.edu

Meng-Shiou Wu Scalable Computing Laboratory, The Ames Laboratory,
US DoE, Ames, IA 50011, USA, mswu@scl.ameslab.gov

Yusaku Yamamoto Kobe University, Kobe, Hyogo 657-8501, Japan,
yamamoto@cs.kobe-u.ac.jp

Zhao Zhang Department of Electrical and Computer Engineering, Iowa State
University, Ames, IA 50011, USA, zzhang@iastate.edu

Jin Zhou University of California, Irvine, CA, USA, jzhou1@uci.edu