The Physical Basis of Biochemistry
Preface to the Second Edition

In its first edition, the Physical Basis of Biochemistry endeavored to connect the foundation principles of biology to the essential processes in physics and chemistry. The core purpose of the new edition remains that described in the first edition:

- *The Physical Basis of Biochemistry* is an introduction to the philosophy and practice of an interdisciplinary field in which biological systems are explored using the quantitative perspective of the physical scientist. I have three primary objectives in this volume: one, to provide a unifying picture of the interdisciplinary threads from which the tapestry of biophysical studies are woven; two, to provide an insight into the power of the modeling approach to scientific investigation; and three, to communicate a sense of excitement for the activity and wholesome argument that characterizes this field of study.

- The students in this course are likely to be a cross section of quantitatively oriented biologists as well as aspiring chemists, physicists, and engineers with an interest in biological systems. This leads to a mixing of interests and disciplines brought to both the classroom and the laboratory. A fundamental assumption of a physical approach to biology and especially to biophysical chemistry is that we can gain understanding of a biological phenomenon by describing and understanding its physical nature. Thus the tools of the physical scientist become available to the biologist in the exploration of the complexities of biological systems.

In the preface to the first edition of The Physical Basis of Biochemistry I wrote

In recent years, the skills of the biophysical chemist have emerged as prized commodities in both academic and industrial circles. The need for these skills will intensify as the practice in biotechnology and bioindustry moves from gene identification to the manufacture of gene products that will need both proper structure and function to be useful.

Just 6 years after that preface was written, the human genome was decoded and in the last decade genomics has given way to proteomics and the apparent rediscovery of the biological system. There have been several “great surprises” such as the complexity of the protein-folding question, the massive diversity of form and function that arises from a much smaller number of genes than expected,
and an explosion of biomathematical needs and expectations as the field of bioinformatics has become critical to application of these data to biological questions in fields as diverse as evolution, anthropology, linguistics, neurosciences, and biomedicine.

The idea that a fundamental understanding of the basic physical principles underlying chemical biological systems is vital remains the focus of this new edition. This new edition has been extensively reworked and reorganized to be more pedagogically friendly to the original goals as outlined above. The parallel construction of topics in the first edition was much more difficult to teach in classrooms than expected and a more traditional ordering has now been restored. There has been substantial new material added with respect to models at the simple molecular level—including van der Waals gases and virial treatments—which is tied to coverage of models of polymer thermodynamics. The methods for biophysical analysis have largely been reorganized and are now found in Part V.

The new edition is again partitioned into five parts:

Part I explores the central concept that science is a way of looking at the world. The role of scientific inquiry and its dependence on systems analysis and model making (the progression of inquiry) is once again emphasized with respect to building a background in biological content, an approach to systems science, and a review of probability and statistics.

Part II reviews the physical underpinnings of biophysical chemistry with an emphasis first on energy, work, and forces of biological importance. Then an introduction to quantum mechanics, chemical principles, and thermodynamics prepares the student with the tools necessary for constructing models in biological state space.

Part III uses the physical foundations developed in the first two parts to explore how models applicable to molecular biophysics are constructed. The overall system is that of aqueous biochemistry. The part starts with a consideration of the properties of water and then sequentially explores the interactions of water with the chemical components that make up biological systems. In the development of ion–solvent and ion–ion models, the Born, Kirkwood, and Debye–Hückel models instruct us on how these great physical scientists brought us to where we are today. There is a certain “classical” coverage of material but it is important for the modern student to see where the simplifications and abstractions originated in many of the ideas that have become our modern dogma. The part explores the interactions that lead to macromolecular (polymer) structure, the properties of the cell membrane, and the structure of the electrified regions near cells and colloidal surfaces.

Part IV takes the three-dimensional potential energy surface, which reflects the equilibrium state, and puts it into motion. This part explores the time-dependent actions of real-world processes. The major driving forces in biological systems are chemical and electrical gradients, and, diffusion and
conduction are the focus of this part. It concludes with an examination of the electromechanical phenomena of electrokinetics and the kinetics of chemical and electrochemical systems of biological importance: enzymes and electron transfer in proteins.

Part V is a succinct discussion of the biophysical methods used to evaluate structure and function in biological systems. First the physics underlying the methods that use mechanical macroscopic properties to cause motion in a field such as centrifugation, electrophoresis, mass spectrometry, and chromatography are presented. Then the exploration of molecular structure with photons through spectroscopy and scattering techniques is presented. Finally the use of imaging techniques such as light, fluorescence, and atomic force microscopy is examined.

The **Appendices** continue to serve the purpose of presenting in detail some review information and certain topics that will be of interest to some readers, but might otherwise disrupt the flow of the textual story line.

The **question and problem** coverage in this volume has undergone some moderate expansion but a companion problems and solutions manual covering the material in this edition and much more extensively providing exercises to support learning these topics is currently being written and should be available concurrently with this text.

As always, projects like this never happen in a vacuum and I remain indebted to the help and support provided by colleagues and my family as this project now reaches into its third decade! This text has become an intergenerational family business. Like the first edition, in which I had the pleasure of working with my late father, Kaare Roald Bergethon, who contributed his scholarly and linguistic skills, in this edition I am pleased to have collaborated with my daughter, Kristin Elizabeth Bergethon, who has come into her own as a chemist and made substantial contributions to several of the chapters in Part 5. Unfortunately, this edition had to proceed without the encouragement of my colleague and friend Mary T. Walsh whose untimely death has left the community without a dedicated teacher and researcher. She is missed by all who knew her. In addition I would like to acknowledge the efforts to improve this edition hopefully will reflect well on those whose input has only helped to accomplish the goal. Any failures and errors that remain are entirely my responsibility.

Boston, Massachusetts

Peter R. Bergethon

September 2009
Contents

Part I Principles of Biophysical Inquiry

1. **Introduction: To the Student – First Edition** ... 3

2. **Philosophy and Practice of Biophysical Study** 5
 2.1 What Is Biophysical Chemistry and Why Study It? 5
 2.2 Science Is Not Content but a Unique Method of Discovery 6
 2.3 The Progression of Inquiry Guides the Scientific Modeling Process ... 8
 2.4 A Brief History of Human Methods of Inquiry Reveals Important Aspects of the Scientific Method 9
 2.5 The Gedanken Experiment Is a Thought Experiment 12
 2.6 The Beginnings of Modern Science– Kepler and Galileo 14
 2.7 Modern Biophysical Studies Still Follow the Paradigm of Kepler and Galileo ... 16
 2.7.1 Describe the Phenomenon – What Is happening Here? What Are the Emergent Properties of the System? 16
 2.7.2 Reduce the Phenomenon to a Systems Description: Identify the Components of a System – Who and What Is Involved? (What Are the Elements?) ... 17
 2.7.3 Analysis of Structure – What Does it Look Like? What Are the Relationships Between the Components? (What Are the Interaction Rules and What Is the Context of the System?) 17
 2.7.4 Analysis of Dynamic Function – What Is the Mechanistic or Explanatory Cause of That? .. 18

Further Reading ... 20

Problem Sets ... 22
3 Overview of the Biological System Under Study

3.1 Hierarchies of Abstraction Are Essential in the Study of Biophysical Chemistry

3.2 An Overview of the Cell: The Essential Building Block of Life

3.2.1 The Cell Membrane Is a Physical Boundary Between the Cell System and Its Surroundings but This Membrane Is Also Part of the Biological System

3.2.2 The Cytoplasmic Space Is the Matrix of the Intracellular System

3.2.3 The Organelles Are Subsystems that Are Found Within the Cytoplasmic Space but Have Unique Environments and Are Therefore Complex Physical Systems

3.2.4 The Nuclear Space Is an Intracellular Space that Is Separated from the Cytoplasmic Space Because of the Systems Interactions

3.3 Control Mechanisms Are Essential Process Elements of the Biological State Space

3.4 Biological Energy Transduction Is an Essential Process that Provides Energy to Ensure the High Degree of Organization Necessary for Life

3.5 The Cell Is a Building Block of Chemical and Biological Organization and Also a Key to the Study of Biological Complexity

3.6 A Brief History of Life

3.7 Evolution Can Be Modeled as a Dynamic Process with Many Bifurcations in the State Space of Life

3.7.1 The Scarcity of Energy and Chemical Resources Is a Fundamental Challenge Encountered in Biological Evolution

3.7.2 The Biochemical Solution to the Energy Limitations Created a New Waste Problem: Global Oxygenation

3.7.3 The Response to the New Biochemical Environment Resulted in a Biological Bifurcation: The Appearance of the Eukaryotic Cell

3.7.4 Compartmentalization Is an Important Reordering of Physiochemical Relationships that Changes the Physical Environment from Solution Dominated to Surface Dominated

Further Reading

Problem Sets
4 Physical Thoughts, Biological Systems – The Application of Modeling Principles to Understanding Biological Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 The Interaction Between Formal Models and Natural Systems Is the Essence of Physical and Biophysical Science</td>
<td>57</td>
</tr>
<tr>
<td>4.2 Observables Are the Link Between Observer and Reality</td>
<td>58</td>
</tr>
<tr>
<td>4.3 Systems Science Guides the Linkage of Natural and Formal Models</td>
<td>60</td>
</tr>
<tr>
<td>4.4 Abstraction and Approximation May Be Useful but Are Not Always Correct</td>
<td>61</td>
</tr>
<tr>
<td>4.5 The Choices Made in Observables and Measurement Influence What Can Be Known About a System</td>
<td>62</td>
</tr>
<tr>
<td>4.6 The Simplifying Concept of Abstraction Is Central to Both Scientific Understanding and Misconception</td>
<td>64</td>
</tr>
<tr>
<td>4.7 Equations of State Capture the System Behavior or “Systemness”</td>
<td>65</td>
</tr>
<tr>
<td>4.8 Equivalent Descriptions Contain the Same Information</td>
<td>67</td>
</tr>
<tr>
<td>4.9 Symmetry and Symmetry Operations Allow Molecules to Be Placed in Groups</td>
<td>69</td>
</tr>
<tr>
<td>4.10 The Goodness of the Model Depends on Where You Look with Bifurcation Leading to New Discovery</td>
<td>71</td>
</tr>
<tr>
<td>4.11 Bifurcations in State Space Characterize Complex Systems</td>
<td>72</td>
</tr>
<tr>
<td>4.12 Catastrophes and Chaos Are Examples of Formal Mathematical Systems That May Capture Important Behaviors of Natural Systems</td>
<td>74</td>
</tr>
</tbody>
</table>

Further Reading: 78
Problem Sets: 80

5 Probability and Statistics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 An Overview of Probability and Statistics</td>
<td>82</td>
</tr>
<tr>
<td>5.2 Discrete Probability Counts the Number of Ways Things Can Happen</td>
<td>82</td>
</tr>
<tr>
<td>5.3 Specific Techniques Are Needed for Discrete Counting</td>
<td>84</td>
</tr>
<tr>
<td>5.3.1 Multiplication Counts Possible Outcomes of Successive Events</td>
<td>85</td>
</tr>
<tr>
<td>5.3.2 Permutations Are Counts of Lineups</td>
<td>86</td>
</tr>
<tr>
<td>5.3.3 Combinations Are Counts of Committees</td>
<td>86</td>
</tr>
<tr>
<td>5.3.4 Counting Indistinguishable Versus Distinguishable Entities Require Different Techniques</td>
<td>87</td>
</tr>
<tr>
<td>5.4 Counting Conditional and Independent Events That Occur in Multistage Experiments Require Special Considerations</td>
<td>87</td>
</tr>
<tr>
<td>5.5 Discrete Distributions Come from Counting Up the Outcomes of Repeated Experiments</td>
<td>89</td>
</tr>
<tr>
<td>5.5.1 The Multinomial Coefficient</td>
<td>89</td>
</tr>
</tbody>
</table>
5.5.2 The Binomial Distribution Captures the Probability of Success in the Case of Two Possible Outcomes ... 91
5.5.3 The Poisson Distribution Requires Fewer Parameters for Calculation Than the Binomial Distribution ... 91
5.6 Continuous Probability Is Represented as a Density of Likelihood Rather Than by Counting Events 94
5.6.1 Some Mathematical Properties of Probability Density Functions ... 95
5.6.2 The Exponential Density Function Is Useful for Lifetime Analysis ... 98
5.6.3 The Gaussian Distribution Is a Bell-Shaped Curve ... 99
5.6.4 Stirling’s Formula Can Be Used to Approximate the Factorials of Large Numbers ... 101
5.6.5 The Boltzmann Distribution Finds the Most Probable Distribution of Particles in Thermal Equilibrium ... 102

Further Reading ... 105
Problem Sets ... 105

Part II Foundations

6 Energy and Force – The Prime Observables ... 109
6.1 Experimental Models Are a Careful Abstraction of Either Descriptive or Explanatory Models ... 109
6.2 Potential Energy Surfaces Are Tools that Help Find Structure Through the Measurement of Energy ... 110
6.3 Conservative Systems Find Maximal Choice by Balancing Kinetic and Potential Energies Over Time ... 113
6.4 Forces in Biological Systems Do the Work That Influences Structure and Function ... 115
6.4.1 The Concept of Forces and Fields Is Derived from Newton’s Laws of Motion ... 115
6.4.2 Force and Mass Are Related Through Acceleration ... 116
6.4.3 The Principle of Conservation Leads to the Concept of a Force Field ... 117
6.4.4 Energy Is a Measure of the Capacity to Do Work ... 118
Further Reading ... 122
Problem Sets ... 123

7 Biophysical Forces in Molecular Systems ... 125
7.1 Form and Function in Biomolecular Systems Are Governed by a Limited Number of Forces ... 126
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Mechanical Motions Can Describe the Behavior of Gases and the Migration of Cells</td>
<td>127</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Motion in One and Two Dimensions</td>
<td>127</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Motion Under Constant Acceleration</td>
<td>128</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Projectile Motion in a Constant Potential Energy Field</td>
<td>129</td>
</tr>
<tr>
<td>7.3</td>
<td>The Kinetic Theory of Gases Explains the Properties of Gases Based on Mechanical Interactions of Molecules</td>
<td>129</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Collisions Are Impacts in Which Objects Exchange Momentum</td>
<td>130</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Reviewing the Phenomenology of Dilute Gases Sheds Light on Molecular Mechanics</td>
<td>131</td>
</tr>
<tr>
<td>7.3.3</td>
<td>The Pressure of a Gas Is Derived from the Transfer of an Extremely Small Amount of Momentum from an Atom to the Wall of a Vessel</td>
<td>134</td>
</tr>
<tr>
<td>7.3.4</td>
<td>The Law of Equipartition of Energy Is a Classical Treatment of Energy Distribution</td>
<td>138</td>
</tr>
<tr>
<td>7.3.5</td>
<td>The Real Behavior of Gases Can Be Better Modeled by Accounting for Attractive and Repulsive Forces Between Molecules</td>
<td>141</td>
</tr>
<tr>
<td>7.4</td>
<td>The Electric Force Is the Essential Interaction that Leads to the Chemical Nature of the Universe</td>
<td>144</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Electrostatics Define Electrical Forces Between Stationary Charges</td>
<td>144</td>
</tr>
<tr>
<td>7.4.2</td>
<td>The Electric Field Is Associated with a Charged Object</td>
<td>147</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Electric Dipoles Are Opposite Charges that Are Separated in Space</td>
<td>151</td>
</tr>
<tr>
<td>7.4.4</td>
<td>The Electric Flux Is a Property of the Electric Field</td>
<td>152</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Gauss’ Law Relates the Electric Field to an Electric Charge</td>
<td>153</td>
</tr>
<tr>
<td>7.4.6</td>
<td>A Point Charge Will Accelerate in an Electric Field</td>
<td>154</td>
</tr>
<tr>
<td>7.4.7</td>
<td>The Electric Potential Is the Capacity to Do Electrical Work</td>
<td>155</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Equipotential Surfaces Are Comprised of Lines of Constant Potential</td>
<td>158</td>
</tr>
<tr>
<td>7.4.9</td>
<td>Calculating Potential Fields</td>
<td>158</td>
</tr>
<tr>
<td>7.4.10</td>
<td>Capacitors Store Electrostatic Field Energy</td>
<td>160</td>
</tr>
<tr>
<td>7.5</td>
<td>Wave Motion Is Important in Electromagnetic and Mechanical Interactions in Biological Systems</td>
<td>162</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Pulses Are the Starting Point for Understanding Wave Motion</td>
<td>163</td>
</tr>
<tr>
<td>7.5.2</td>
<td>The Wavefunction Is a Mathematical Expression for Wave Motion in Terms of Space and Time</td>
<td>164</td>
</tr>
</tbody>
</table>
7.5.3 Superposition and Interference Are Fundamental Properties of Wave Interaction 165
7.5.4 The Velocity of a Wave Pulse Is a Function of the Transmission Medium 166
7.5.5 Reflection and Transmission of a Wave Depends on the Interface Between Two Phases of Different Speeds of Propagation 167
7.6 Harmonic Waves Are the Result of a Sinusoidal Oscillation 167
7.6.1 Wavelength, Frequency, and Velocity 168
7.6.2 Polarization 169
7.6.3 Superposition and Interference – Waves of the Same Frequency 171
7.7 Energy and Intensity of Waves 174
7.7.1 Sound and Human Ear 175
7.8 Standing Waves 176
7.9 Superposition and Interference – Waves of Different Frequencies 179
7.10 Complex Waveforms 181
7.11 Wave Packets 182
7.12 Dispersion 184
7.13 The Wave Equation 185
7.14 Waves in Two and Three Dimensions 186
Further Reading 189
Problem Sets 189

8 Physical Principles: Quantum Mechanics 191
8.1 The Story of the Discovery of Quantum Mechanics Is an Instructive History of How Scientific Ideas AreModified 192
8.2 From the Standpoint of the Philosophy of Epistemological Science, the Quantum Revolution Ended an Age of Certainty 192
8.3 The Ultraviolet Catastrophe Is a Term That Refers to a Historical Failure of Classical Theory 194
8.3.1 Thermal Radiation 195
8.3.2 Blackbody Radiation 195
8.3.3 Classical Theory of Cavity Radiation 197
8.3.4 Planck’s Theory of Cavity Radiation 199
8.3.5 Quantum Model Making – Epistemological Reflections on the Model 200
8.4 The Concept of Heat Capacity Was Modified by Quantum Mechanical Considerations 202
8.5 The Photoelectric Effect and the Photon-Particle Properties of Radiation Could Be Understood Using Planck’s Quanta 203
8.6 Electromagnetic Radiation Has a Dual Nature 205
8.7 de Broglie’s Postulate Defines the Wavelike Properties of Particles .. 206
8.8 The Electron Microscope Employs Particles as Waves to Form Images 207
8.9 The Uncertainty Principle Is an Essential Conclusion of the Quantum Viewpoint 209
8.10 An Historical Approach to Understanding Atomic Structure and the Atom 210
 8.10.1 Atomic Spectra 213
 8.10.2 Bohr’s Model 215
8.11 Quantum Mechanics Requires the Classical Trajectory Across a Potential Energy Surface to be Replaced by the Wavefunction ... 218
 8.11.1 The Schrödinger Equation 220
8.12 Solutions to the Time-Independent Schrödinger Theory ... 224
 8.12.1 Linear Motion – Zero Potential Field 224
 8.12.2 The Step Potential 226
 8.12.3 The Barrier Potential 227
 8.12.4 The Square Well Potential 229
 8.12.5 The Harmonic Oscillator 232
 8.12.6 Rotational and Angular Motion 233
8.13 Building the Atomic Model – One-Electron Atoms ... 235
8.14 Building the Atomic Model – Multi-electron Atoms ... 238
 8.14.1 Fermions and Bosons 238
 8.14.2 Self-Consistent Field Theory Finds Approximate Wavefunctions for Multi-electron Atoms 239
Further Reading ... 240
Problem Sets ... 241
9 Chemical Principles ... 243
 9.1 Knowing the Distribution of Electrons in Molecules Is Essential for Understanding Chemical Structure and Behavior ... 243
 9.2 The Nature of Chemical Interactions ... 244
 9.3 Electrostatic Forces Describe the Interactions from Salt Crystals to van der Waals Attraction 244
 9.3.1 Ion–Ion Interactions 244
 9.3.2 Ion–Dipole Interactions 245
 9.3.3 Ion-Induced Dipole Interactions 246
 9.3.4 van der Waals Interactions 246
 9.4 Covalent Bonds Involve a True Sharing of Electrons Between Atoms 249
 9.4.1 Lewis Structures Are a Formal Shorthand that Describe Covalent Bonds 250
9.4.2 VSEPR Theory Predicts Molecular Structure

9.4.3 Molecular Orbital Theory Is an Approximation to a Full Quantum Mechanical Treatment of Covalent Interactions

9.5 Hydrogen Bonds Are a Unique Hybrid of Interactions and Play a Fundamental Role in the Behavior of Biological Systems

9.6 Biological Systems Are Made from a Limited Number of Elements

Further Reading

Problem Sets

10 Measuring the Energy of a System: Energetics and the First Law of Thermodynamics

10.1 Historically Heat Was Thought to Be a Fluid or “the Caloric”

10.2 The Thermodynamic Modeling Space Is a Systemic Approach to Describing the World

10.2.1 Systems, Surroundings, and Boundaries

10.2.2 Properties of a Thermodynamic System

10.2.3 Extensive and Intensive Variables

10.2.4 The State of a System

10.2.5 How Many Properties Are Required to Define the State of a System?

10.2.6 Changes in State

10.3 The First Law States that “The Energy of the Universe Is Conserved”

10.3.1 Specialized Boundaries Are Important Tools for Defining Thermodynamic Systems

10.3.2 Evaluating the Energy of a System Requires Measuring Work and Heat Transfer

10.4 The Heat Capacity Is a Property that Can Reflect the Internal Energy of a System

10.5 Enthalpy Is Defined When a System Is Held at Constant Pressure

Thought Questions

Further Reading

Problem Sets

11 Entropy and the Second Law of Thermodynamics

11.1 The Arrow of Time and Impossible Existence of Perpetual Motion Machines Are Both Manifestations of the Second Law of Thermodynamics

11.1.1 The Movement of a System Toward Equilibrium Is the Natural Direction

11.2 The Design of a Perfect Heat Engine Is an Important Thought Experiment
Contents

11.2.1 Reversible Paths Have Unique Properties Compared to Irreversible Paths .. 296
11.2.2 A Carnot Cycle Is a Reversible Path Heat Engine ... 301
11.2.3 Entropy Is the Result of the Consideration of a Carnot Cycle ... 305

11.3 A Mechanical/Kinetic Approach to Entropy .. 307
11.3.1 The Statistical Basis of a Mechanistic Theory Is Reflected by System Properties 308
11.3.2 Fluctuations Can Be Measured Statistically ... 309

11.4 Statistical Thermodynamics Yields the Same Conclusions as Classical Treatment of Thermodynamics ... 310
11.4.1 The Ensemble Method Is a Thought Experiment Involving Many Probability Experiments ... 310
11.4.2 The Canonical Ensemble Is an Example of the Ensemble Method 312
11.4.3 The Distribution of Energy Among Energy States Is an Important Description of a System ... 316
11.4.4 Heat Flow Can Be Described Statistically ... 317
11.4.5 Internal Molecular Motions, Energy and Statistical Mechanics Are Related by a Partition Function ... 320

11.5 Entropy Can Be Described and Understood on a Statistical Basis ... 321
11.5.1 Different Statistical Distributions Are Needed for Different Conditions ... 321
11.5.2 Phenomenological Entropy Can Be Linked to Statistical Entropy ... 323

11.6 The Third Law of Thermodynamics Defines an Absolute Measure of Entropy ... 324

Further Reading ... 324
Problem Sets ... 325

12 Which Way Is That System Going? The Gibbs Free Energy ... 327
12.1 The Gibbs Free Energy Is a State Function that Indicates the Direction and Position of a System’s Equilibrium ... 327
12.2 The Gibbs Free Energy Has Specific Properties ... 329
12.3 The Free Energy Per Mole, μ, Is an Important Thermodynamic Quantity ... 333
12.4 The Concept of Activity Relates an Ideal System to a Real System ... 333
12.5 The Application of Free Energy Considerations to Multiple-Component Systems ... 334
Part III Building a Model of Biomolecular Structure

14 Water: A Unique Solvent and Vital Component of Life .. 389
 14.1 An Introduction to the Most Familiar of All Liquids 389
 14.2 The Physical Properties of Water Are Consistent with a High Degree of Intermolecular Interaction ... 391
 14.3 Considering the Properties of Water as a Liquid .. 392
 14.4 The Structure of Monomolecular Water Can Be Described Using a Variety of Models ... 394
 14.5 The Capacity of Water to Form Hydrogen Bonds Underlies Its Unusual Properties ... 398
 14.6 The Structure and Dynamics of Liquid Water Results in “Ordered Diversity” That Is Probably Distinct from Ice ... 402
 14.7 Hydrophobic Forces Reference Interactions Between Water and Other Molecules ... 405
Further Reading .. 407
Problem Sets ... 408

15 Ion–Solvent Interactions .. 409
 15.1 The Nature of Ion-Solvent Interactions Can Be Discovered Through the Progression of Inquiry ... 409
 15.2 The Born Model Is a Thermodynamic Cycle That Treats the Interaction Energy Between a Simplified Ion and a Structureless Solvent ... 410
 15.2.1 Building the Model .. 411
 15.2.2 Choosing an Experimental Observable to Test the Model 414
 15.3 Adding Water Structure to the Solvent Continuum .. 418
 15.3.1 The Energy of Ion–Dipole Interactions Depends on Geometry 419
 15.3.2 Dipoles in an Electric Field: A Molecular Picture of the Dielectric Constants ... 420
 15.3.3 What Happens When the Dielectric Is Liquid Water? 426
 15.4 Extending the Ion–Solvent Model Beyond the Born Model 429
 15.4.1 Recalculating the New Model .. 430
 15.5 Solutions of Inorganic Ions ... 435
 15.6 Ion–Solvent Interactions in Biological Systems ... 437
Further Reading .. 438
Problem Sets ... 438

16 Ion–Ion Interactions .. 441
 16.1 Ion–Ion Interactions Can Be Modeled and These Models Can Be Experimentally Validated and Refined ... 441
 16.2 The Debye–Hückel Model Is a Continuum Model That Relates a Distribution of Nearby Ions to a Central Reference Ion ... 444
16.3 The Predictions Generated by the Debye–Hückel Model Can Be Experimentally Evaluated 453
16.4 More Rigorous Treatment of Assumptions Leads to an Improved Performance of the Debye–Hückel Model . 455
16.5 Consideration of Other Interactions Is Necessary to Account for the Limits of the Debye–Hückel Model 457
16.5.1 Bjerrum Suggested That Ion Pairing Could Affect the Calculation of Ion–Ion Interactions 457

Further Reading .. 458
Problem Sets ... 459

17 Lipids in Aqueous Solution 461
17.1 Biological Membranes Form at the Interface Between Aqueous and Lipid Phases 461
17.2 Aqueous Solutions Can Be Formed with Small Nonpolar Molecules 462
17.3 Aqueous Solutions of Organic Ions Are an Amalgam of Ion-Solvent and Nonpolar Solute Interaction 465
 17.3.1 Solutions of Small Organic Ions 465
 17.3.2 Solutions of Large Organic Ions 466
17.4 Lipids Can Be Placed into Several Major Classes 468
17.5 The Organization of Lipids into Membranes Occurs When Aqueous and Lipid Phases Come in Contact 474
17.6 The Physical Properties of Lipid Membranes 478
 17.6.1 Phase Transitions in Lipid Membranes 478
 17.6.2 There Are Specific and Limited Motions and Mobilities Found in Membranes 479
17.7 Biological Membranes: A More Complete Picture 482

Further Reading .. 483

18 Macromolecules in Solution 485
18.1 The Physical Interactions of Polymers in Solution Are Not Unique but Modeling the Interactions Will Require Different Considerations Than Those of Smaller Molecules 486
18.2 Thermodynamics of Solutions of Polymers 487
 18.2.1 The Entropy of Mixing for a Polymer Solution Requires a Statistical Approach 489
 18.2.2 The Enthalpy of Mixing in a Polymer Solution Is Dominated by van der Waals Interactions 493
 18.2.3 The Free Energy of Mixing Relates Enthalpy and Entropy in the Standard Manner 498
 18.2.4 Calculation of the Partial Specific Volume and Chemical Potential 499
18.2.5 Vapor Pressure Measurements Can Experimentally Be Used to Indicate Interaction Energies 504
18.3 The Conformation of Simple Polymers Can Be Modeled by a Random Walk and a Markov Process 505
18.4 The Major Classes of Biochemical Species Form Macromolecular Structures 506
 18.4.1 Nucleic Acids Are the Basis for Genetic Information Storage and Processing 506
 18.4.2 Carbohydrate Polymers Are Dominated by Hydrophilic Interactions with Water 513
 18.4.3 The Polymers of Amino Acids, Proteins Are by Far the Most Diverse and Complex of All Biological Polymer Families 515
18.5 Nonpolar Polypeptides in Solution 523
18.6 Polar Polypeptides in Solution 527
18.7 Transitions of State 531
18.8 The Protein Folding Problem 538
18.9 Pathological Protein Folding 542
 18.9.1 Alzheimer's Disease 544
 18.9.2 Familial Amyloidotic Polyneuropathy 545
 18.9.3 Spongiform Encephalopathies 546
Further Reading .. 549
Problem Sets ... 551

19 Molecular Modeling – Mapping Biochemical State Space 553
19.1 The Prediction of Macromolecular Structure and Function Is a Goal of Molecular Modeling 553
19.2 Molecular Modeling Is Built on Familiar Principles 554
19.3 Empirical Methods Use Carefully Constructed Physical Models ... 555
 19.3.1 Sticks and Stones 555
 19.3.2 The Ramachandran Plot Is the “Art of the Possible” .. 557
 19.3.3 Secondary Structure Prediction in Proteins Is an Important Challenge in Molecular Modeling ... 563
19.4 Computational Methods Are the Ultimate Gedanken Experiments .. 569
19.5 Molecular Mechanics Is a Newtonian or Classical Mechanical Modeling Approach 571
 19.5.1 Bond Stretching 574
 19.5.2 Bond Bending 576
 19.5.3 Torsional or Dihedral Potential Functions 576
 19.5.4 van der Waals Interactions 577
 19.5.5 Electrostatic Interactions 578
19.6 Quantum Mechanical Methods Are Computational
Difficult but Theoretically “Pure” 579
Further Reading ... 581
Problem Sets .. 582

20 The Electrified Interphase 583
20.1 The Interphase Is Formed When Phases Meet 583
20.2 A Detailed Structural Description of the Interphase
Is a Task for Physical Study 587
20.3 The Simplest Picture of the Interphase Is
the Helmholtz–Perrin Model 589
20.4 The Balance Between Thermal and Electrical Forces
Is Seen as Competition Between Diffuse-Layer
Versus Double-Layer Interphase Structures 590
20.5 The Stern Model Is a Combination of the Capacitor
and Diffuse Layer Models 591
20.6 A More Complete Picture of the Double-Layer Forms
with Added Detail ... 593
20.7 Colloidal Systems and the Electrified Interface Give
Rise to the Lyophilic Series 595
20.8 Salting Out Can Be Understood in Terms of
Electrified Interphase Behavior 599
Further Reading ... 600
Problem Sets .. 600

Part IV Function and Action Biological State Space

21 Transport – A Non-equilibrium Process 605
21.1 Transport Is an Irreversible Process and Does Not
Occur at Equilibrium 605
21.2 The Principles of Non-equilibrium Thermodynamics
Can Be Related to the More Familiar Equilibrium
Treatment with the Idea of Local Equilibrium 606
Further Reading ... 610

22 Flow in a Chemical Potential Field: Diffusion 611
22.1 Transport in Chemical, Electrical, Pressure, and
Thermal Gradients Are All Treated with the Same
Mathematics .. 611
22.2 Diffusion or the Flow of Particles Down a
Concentration Gradient Can Be Described
Phenomenologically 612
22.3 The Random Walk Forms the Basis for a Molecular
Picture of Flux .. 616
Further Reading ... 622
Problem Sets .. 622
23 Flow in an Electric Field: Conduction

23.1 Transport of Charge Occurs in an Electric Field

23.1.1 Ionic Species Can Be Classified as True or Potential Electrolytes

23.2 Describing a System of Ionic Conduction Includes Electronic, Electrolic, and Ionic Elements

23.3 The Flow of Ions Down a Electrical Gradient Can Be Described Phenomenologically

23.4 A Molecular View of Ionic Conduction

23.5 Interionic Forces Affect Conductivity

23.6 Proton Conduction Is a Special Case that Has a Mixed Mechanism

Further Reading

Problem Sets

24 Forces Across Membranes

24.1 Energetics and Force in Membranes

24.2 The Donnan Equilibrium Is Determined by a Balance Between Chemical and Electrical Potential in a Two-Phase System

24.3 Electric Fields Across Membranes Are of Substantial Magnitude

24.3.1 Diffusion and Concentration Potentials Are Components of the Transmembrane Potential

24.3.2 The Goldman Constant Field Equation Is an Expression Useful for Quantitative Description of the Biological Electrochemical Potential

24.4 Electrostatic Profiles of the Membrane Are Potential Energy Surfaces Describing Forces in the Vicinity of Membranes

24.5 The Electrochemical Potential Is a Thermodynamic Treatment of the Gradients Across a Cellular Membrane

24.6 Transport Through the Lipid Bilayer of Different Molecules Requires Various Mechanisms

24.6.1 Modes of Transport Include Passive, Facilitated, and Active Processes

24.6.2 Water Transport Through a Lipid Phase Involves Passive and Pore Specific Mechanisms

Further Reading

Problem Sets

25 Kinetics – Chemical Kinetics

25.1 The Equilibrium State Is Found by Chemical Thermodynamics but Chemical Kinetics Tells the Story of Getting There
25.2 A Historical Perspective on the Development of Chemical Kinetics ... 671
25.3 Kinetics Has a Specific and Systemic Language ... 675
 25.3.1 Mechanism and Order .. 675
25.4 Order of a Reaction Relates the Concentration of Reactants to the Reaction Velocity 676
25.5 Expressions of the Rate Laws Are Important Properties of a Reaction 677
 25.5.1 Zero Order Reactions .. 677
 25.5.2 First-Order Reactions .. 679
 25.5.3 Second-Order Reactions ... 680
 25.5.4 Experimental Determination of a Rate Law Requires Measurement of Two Observables, Time and Concentration ... 681
25.6 Elementary Reactions Are the Elements of the System That Defines a Chemical Mechanism 681
25.7 Reaction Mechanisms Are a System of Interacting Elements (Molecules) in the Context of a Potential Energy Surface ... 682
 25.7.1 Collision Theory .. 682
 25.7.2 Surprises in the Collision Theory State Space Require Re-evaluation of the Abstraction 686
 25.7.3 Transition-State Theory Is a Quantum Mechanical Extension of the Classical Flavor of Collision Theory ... 687
 25.7.4 The Potential Energy Surface Unifies the Models ... 691
25.8 Solution Kinetics Are More Complicated Than the Simple Kinetic Behavior of Gases 699
25.9 Enzymes Are Macromolecular Catalysts with Enormous Efficiency ... 699
 25.9.1 Enzyme Kinetics .. 702
 25.9.2 Enzymes Can Be Characterized by Kinetic Properties ... 704
 25.9.3 Enzymes Are Complex Systems Subject to Biophysical Control 707
Further Reading ... 710
Problem Sets ... 710

26 Dynamic Bioelectrochemistry – Charge Transfer in Biological Systems ... 713
26.1 Electrokinetics and Electron Charge Transfer Depend on Electrical Current Flow in Biochemical Systems ... 713
26.2 Electrokinetic Phenomena Occur When the Elements of the Biological Electrical Double Layer Experience Either Mechanical or Electrical Transport ... 714
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.2.1</td>
<td>The Zeta Potential Is Measured at the Outer Helmholtz Plane of the Electrical Double Layer</td>
<td>714</td>
</tr>
<tr>
<td>26.2.2</td>
<td>A Streaming Potential Results When Fluid Flows in a Cylinder</td>
<td>715</td>
</tr>
<tr>
<td>26.2.3</td>
<td>Electro-osmosis Is the Transport of Solvent Coincident with Electrical Induced Flux of Electrolytes</td>
<td>716</td>
</tr>
<tr>
<td>26.2.4</td>
<td>Electrophoresis Describes the Motion of Particles with an Electrical Double Layer in an Electrical Field</td>
<td>717</td>
</tr>
<tr>
<td>26.2.5</td>
<td>A Sedimentation Potential Arises When with the Movement of a Particle Relative to a Stationary Solvent</td>
<td>721</td>
</tr>
<tr>
<td>26.2.6</td>
<td>Electrokinetic Phenomena Can Have a Role in Biological Systems</td>
<td>721</td>
</tr>
<tr>
<td>26.3</td>
<td>Electron Transfer Is an Essential Form of Biological Charge Transfer</td>
<td>722</td>
</tr>
<tr>
<td>26.3.1</td>
<td>Dynamic Electrochemistry Is the Study of Electron Transfer and Their Kinetics</td>
<td>722</td>
</tr>
<tr>
<td>26.3.2</td>
<td>Electron Transfer Is a Quantum Mechanical Phenomenon</td>
<td>726</td>
</tr>
<tr>
<td>26.3.3</td>
<td>Electron Charge Transfer Can Occur in Proteins</td>
<td>730</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>736</td>
</tr>
<tr>
<td>Problem Sets</td>
<td></td>
<td>737</td>
</tr>
</tbody>
</table>

Part V Methods for the Measuring Structure and Function

27 Separation and Characterization of Biomolecules Based on Macroscopic Properties | 741 |

27.1 Introduction: Mechanical Motion Interacts with Mass, Shape, Charge, and Phase to Allow Analysis of Macromolecular Structure | 742 |

27.2 Buoyant Forces Are the Result of Displacement of the Medium by an Object | 742 |

27.2.1 Motion Through a Medium Results in a Retarding Force Proportional to Speed | 743 |

27.2.2 Frictional Coefficients Can Be Used in the Analysis of Macromolecular Structure | 744 |

27.2.3 The Centrifuge Is a Device that Produces Motion by Generating Circular Motion with Constant Speed | 745 |

27.2.4 Sedimentation Occurs When Particles Experience Motion Caused by Gravitational or Equivalent Fields | 748 |
27.2.5 Drag Forces on Molecules in Motion Are Proportional to the Velocity of the Particle 755
27.2.6 Fluids Will Move and Be Transported When Placed Under a Shearing Stress Force 756

27.3 Systems Study in the Biological Science Requires Methods of Separation and Identification to Describe the “State of a Biological System” 760

27.4 Electrophoresis Is a Practical Application of Molecular Motion in an Electrical Field Based on Charge and Modified by Conformation and Size 760

27.5 Chromatographic Techniques Are Based on the Differential Partitioning of Molecules Between Two Phases in Relative Motion 763

27.6 The Motion Induced by a Magnetic Interaction Is Essential for Determination of Molecular Mass in Modern Biological Investigations 767

27.6.1 Magnetic Fields Are Vector Fields of Magnetic Force that Can Be Found Throughout Space 768

27.6.2 Magnets Interact with One Another Through the Magnetic Field 770

27.6.3 Current Loops in B Fields Experience Torque 771

27.6.4 The Path of Moving Point Charges in a B Field Is Altered by the Interaction 771

27.6.5 The Mass Spectrometer Is Widely Used Following Various Separation Techniques to Characterize Biological Samples 772

Further Reading .. 775
Problem Sets ... 775

28 Analysis of Molecular Structure with Electronic Spectroscopy 779

28.1 The Interaction of Light with Matter Allows Investigation of Biochemical Properties 780

28.2 The Motion of a Dipole Radiator Generates Electromagnetic Radiation 780

28.3 Optical Interactions Can Be Treated at Varying Levels of Abstraction 780

28.4 Atomic and Molecular Energy levels Are a Quantum Phenomenon That Provide a Window on Molecular Structure .. 782

28.4.1 There Are Points of Maximum Inflection Occurring at Particular Wavelengths 783

28.4.2 Each Maximum Has a Different Intensity 786

28.4.3 The Maxima Are Spread to Some Degree and Are Not Sharp 787
<table>
<thead>
<tr>
<th>28.5</th>
<th>Absorption Spectroscopy Has Important Applications to Biochemical Analysis</th>
<th>789</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5.1</td>
<td>Absorption Spectroscopy Is a Powerful Tool in the Examination of Dilute Solutions</td>
<td>793</td>
</tr>
<tr>
<td>28.6</td>
<td>Fluorescence and Phosphorescence Occur When Trapped Photon Energy Is Re-radiated After a Finite Lifetime</td>
<td>794</td>
</tr>
<tr>
<td>28.7</td>
<td>Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) Depend on Interactions Between Photons and Molecules in a Magnetic Field</td>
<td>797</td>
</tr>
<tr>
<td>28.7.1</td>
<td>The Solenoid Shapes the Magnetic Field in a Manner Similar to the Parallel-Plate Capacitor</td>
<td>798</td>
</tr>
<tr>
<td>28.7.2</td>
<td>Magnetism in Matter Has Distinct Properties</td>
<td>798</td>
</tr>
<tr>
<td>28.7.3</td>
<td>Atoms Can Have Magnetic Moments</td>
<td>800</td>
</tr>
<tr>
<td>28.7.4</td>
<td>EPR Spectroscopy Allows Exploration of Molecular Structure by Interaction with the Magnetic Moment of an Electron</td>
<td>803</td>
</tr>
<tr>
<td>28.7.5</td>
<td>NMR Spectroscopy Employs the Magnetic Properties of Certain Nuclei for Determining Structure</td>
<td>804</td>
</tr>
<tr>
<td>28.7.6</td>
<td>Further Structural Information Can Be Found by NMR Studies of Nuclei Other Than Protons</td>
<td>809</td>
</tr>
</tbody>
</table>

Further Reading 812

Problem Sets 813

29	Molecular Structure from Scattering Phenomena	815
29.1	The Interference Patterns Generated by the Interaction of Waves with Point Sources Is a Valuable Tool in the Analysis of Structure	815
29.2	Diffraction Is the Result of the Repropagation of a Wave	819
29.3	X-Ray Diffraction Is a Powerful Fool for Structure Determination	822
29.4	Scattering of Light Rather Than Its Absorption Can Be Used to Probe Molecular Structure and Interaction	831
29.4.1	Rayleigh Scattering	831
29.4.2	Raman Scattering	833
29.4.3	Circular Dichroism and Optical Rotation	834

Further Reading 835

<p>| 30 | Analysis of Structure – Microscopy | 837 |
| 30.1 | Seeing Is Believing | 837 |
| 30.2 | The Light Microscope Allows Visualization of Structures on the Dimensional Scale of the Wavelength of a Photon | 839 |
| 30.3 | Visualization Requires Solving the Problem of Contrast | 843 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.3.1</td>
<td>Dark Field Microscopy</td>
<td>843</td>
</tr>
<tr>
<td>30.3.2</td>
<td>Phase Microscopy</td>
<td>843</td>
</tr>
<tr>
<td>30.3.3</td>
<td>Polarization Microscopy</td>
<td>845</td>
</tr>
<tr>
<td>30.3.4</td>
<td>Histochemistry</td>
<td>847</td>
</tr>
<tr>
<td>30.3.5</td>
<td>Fluorescence Microscopy</td>
<td>848</td>
</tr>
<tr>
<td>30.4</td>
<td>Scanning Probe Microscopy Creates an Image of a Structures by Interactions on a Molecular Scale</td>
<td>849</td>
</tr>
<tr>
<td>30.4.1</td>
<td>Scanning Tunneling Microscopy</td>
<td>850</td>
</tr>
<tr>
<td>30.4.2</td>
<td>Scanning Force Microscopy</td>
<td>852</td>
</tr>
<tr>
<td>30.4.3</td>
<td>Near-Field Optical Microscopy, Outside the Classical Limits</td>
<td>854</td>
</tr>
<tr>
<td>Further Reading</td>
<td></td>
<td>854</td>
</tr>
<tr>
<td>Problem Sets</td>
<td></td>
<td>855</td>
</tr>
<tr>
<td>31</td>
<td>Epilogue</td>
<td>857</td>
</tr>
<tr>
<td>32</td>
<td>Physical Constants</td>
<td>859</td>
</tr>
<tr>
<td></td>
<td>Conversions</td>
<td>859</td>
</tr>
<tr>
<td>Appendix A: Mathematical Methods</td>
<td></td>
<td>861</td>
</tr>
<tr>
<td>A.1</td>
<td>Units and Measurement</td>
<td>861</td>
</tr>
<tr>
<td>A.2</td>
<td>Exponents and Logarithms</td>
<td>862</td>
</tr>
<tr>
<td>A.3</td>
<td>Trigonometric Functions</td>
<td>865</td>
</tr>
<tr>
<td>A.4</td>
<td>Expansion Series</td>
<td>869</td>
</tr>
<tr>
<td>A.5</td>
<td>Differential and Integral Calculus</td>
<td>870</td>
</tr>
<tr>
<td>A.6</td>
<td>Partial Differentiation</td>
<td>870</td>
</tr>
<tr>
<td>A.7</td>
<td>Vectors</td>
<td>872</td>
</tr>
<tr>
<td>A.7.1</td>
<td>Addition and Subtraction</td>
<td>872</td>
</tr>
<tr>
<td>A.7.2</td>
<td>Magnitude of a Vector</td>
<td>873</td>
</tr>
<tr>
<td>A.7.3</td>
<td>Multiplication</td>
<td>873</td>
</tr>
<tr>
<td>Appendix B: Quantum Electrodynamics</td>
<td></td>
<td>875</td>
</tr>
<tr>
<td>Appendix C: The Pre-Socratic Roots of Modern Science</td>
<td></td>
<td>877</td>
</tr>
<tr>
<td>Appendix D: The Poisson Function</td>
<td></td>
<td>879</td>
</tr>
<tr>
<td>Appendix E: Assumptions of a Theoretical Treatment of the Ideal Gas Law</td>
<td></td>
<td>881</td>
</tr>
<tr>
<td>Appendix F: The Determination of the Field from the Potential in Cartesian Coordinates</td>
<td></td>
<td>883</td>
</tr>
<tr>
<td>Appendix G: Geometrical Optics</td>
<td></td>
<td>885</td>
</tr>
<tr>
<td>G.1</td>
<td>Reflection and Refraction of Light</td>
<td>885</td>
</tr>
<tr>
<td>G.2</td>
<td>Mirrors</td>
<td>886</td>
</tr>
<tr>
<td>G.2.1</td>
<td>The Plane Mirror</td>
<td>886</td>
</tr>
<tr>
<td>G.2.2</td>
<td>The Concave Mirror</td>
<td>887</td>
</tr>
<tr>
<td>Contents</td>
<td>xxix</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>G.3 Image Formation by Refraction</td>
<td>889</td>
<td></td>
</tr>
<tr>
<td>G.4 Prisms and Total Internal Reflection</td>
<td>891</td>
<td></td>
</tr>
<tr>
<td>Appendix H: The Compton Effect</td>
<td>893</td>
<td></td>
</tr>
<tr>
<td>Appendix I: Hamilton’s Principle of Least Action/Fermat’s Principle of</td>
<td>895</td>
<td></td>
</tr>
<tr>
<td>Least Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendix J: Derivation of the Energy of Interaction Between Two Ions</td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>Appendix K: Derivation of the Statement, $q_{\text{rev}} > q_{\text{irrev}}$</td>
<td>899</td>
<td></td>
</tr>
<tr>
<td>Appendix L: Derivation of the Clausius–Clapeyron Equation</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>Appendix M: Derivation of the van’t Hoff Equation for Osmotic Pressure</td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>Appendix N: Fictitious and Pseudoforces – The Centrifugal Force</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>Appendix O: Derivation of the Work to Charge and Discharge a Rigid Sphere</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>Appendix P: Review of Circuits and Electric Current</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>P.1 Current Density and Flux</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>P.1.1 Ohm’s Law</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>P.2 Circuits</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>P.2.1 Useful Legal Relations</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>P.2.2 Kirchoff’s Rules</td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>P.2.3 Capacitors in Series and Parallel</td>
<td>912</td>
<td></td>
</tr>
<tr>
<td>P.2.4 Resistors in Series and Parallel</td>
<td>913</td>
<td></td>
</tr>
<tr>
<td>P.2.5 RC Circuits and Relations</td>
<td>913</td>
<td></td>
</tr>
<tr>
<td>P.3 Measuring Instruments</td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>P.3.1 Ammeters, Voltmeters, Ohmmeters</td>
<td>917</td>
<td></td>
</tr>
<tr>
<td>Appendix Q: Fermi’s Golden Rule</td>
<td>919</td>
<td></td>
</tr>
<tr>
<td>Appendix R: The Transition from Reactant to Product:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiabatic and Non-adiabatic Transitions</td>
<td>921</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>923</td>
<td></td>
</tr>
</tbody>
</table>