Alberto M. Marchevsky • Mark R. Wick
Editors

Evidence Based Pathology and Laboratory Medicine

Springer
Pathology and laboratory medicine are currently experiencing paradigm shifts that are likely to influence how our specialty is practiced in the not-too-distant future. Technical innovations in immunohistochemistry, molecular pathology, and pathology informatics are driving the acquisition of many new and exciting data. That phenomenon may well increase the quality and scope of the diagnostic information being provided by laboratory assays. Simultaneously, however, as new technologies invariably increase the cost of medical testing, considerable pressure has accrued concerning financial containment. Thus far, advocates of “the most, the newest, and the best, regardless of cost” have largely prevailed. Nonetheless, it is likely that in the near future, there will be considerable movement toward a strict, cost-effective utilization of laboratory resources that is centered on clinical value and direct applicability of test results in regard to individual patient care.

As practicing pathologists, it has been our impression that there is a great interest in the generation of new data and the exploration of clinical applications for new technologies. At the same time, as a group, we do not often pause to consider how well we are performing certain tasks, and how well we fulfill our charges as members of clinical teams that care for individual patients. Residency education in pathology and laboratory medicine tends to emphasize the acquisition of morphology-based diagnostic skills and information on various laboratory tests. Nonetheless, interest has been limited in teaching future pathologists to understand the pros and cons of various diagnostic models; critically evaluate the contents of medical publications; sift through apparently conflicting information; integrate data from divergent sources; effectively combine the medical literature with personal experience; and practice pathology in a cost-effective manner that does not compromise quality or waste resources.

Internal medicine and other medical specialties have confronted similar issues. They have supported the development of an analytical approach to the evaluation and use of medical information, under the rubric of evidence-based medicine (EBM). That term is somewhat fustian, because it appears to imply that other modes of medical practice are not “evidence-based” or objective. Advocates of EBM have explored the advantages and disadvantages of differing study designs; emphasized the advantages of gathering data through randomized clinical trials; classified medical data in terms of evidence-levels; advocated the use of standardized guidelines for clinical care; and stressed the
use of a patient-centered approach to diagnosis and treatment. Some of those concepts have generated considerable resistance from the medical community at large, in part because EBM tends to deride case reports or small case series as anecdotal or inferior. Opponents of EBM have suggested that it leads to “cookbook medicine” and de-emphasizes clinical experience and the art of medicine. They have also pointed to the practical limitations of randomized clinical trials as a gold standard for the collection of medical information.

A debate continues between advocates of EBM and other physicians who favor more individualized case-based approaches to medical practice. However, regardless of that schism, the current trend toward EBM has provided a valuable service by emphasizing the importance of reliably produced data and suggesting how to best apply it to individual patient care.

In this volume, we explore the application of selected EBM concepts to anatomic pathology and laboratory medicine, embodied in a model that we have dubbed as evidence-based pathology (EBP). This book is unusual in the specialty of pathology, because it is not designed to provide readers with the means to diagnose specific lesions in biopsies or interpret particular laboratory tests. Rather, its intent is to discuss a variety of epistemological and practical issues, and to stimulate thoughts on how well we are doing in practicing truly scientific medicine as pathologists. Another focus is the contrast between rapidly accruing new technologies and health system-related pressures for cost containment.

This monograph addresses two general topics. One concerns a description of problems that occur in applying EBM to laboratory medicine, and the other considers available resources and possible modes of implementing EBP. The first section of the book includes chapters discussing evidence levels, best evidence, and other basic EBM concepts. This is followed by other material that concerns statistics. It does not attempt to teach the intricacies of various statistical tests, but instead is intended to familiarize readers with the basis of the probabilistic thinking that underlies the specific applications of such analyses. The use and misuse of pathological data for prognostication and prediction in anatomic pathology is discussed in detail, and the technique of meta-analysis is also summarized. The statistical discussion in this book is followed by three chapters that discuss the principles of classification and diagnosis in anatomic pathology, the general evaluation of oncopathological studies, and medical decision-making.

The second section of the book includes various solutions to problems in anatomic pathology and laboratory medicine that are offered by EBP. It includes chapters concerning evaluation of the medical literature; a discussion of how EBP might help advance histopathology in the future; an evaluation of diagnostic errors; the use of meta-analysis to investigate unusual diseases and select immunohistochemical tests; a consideration of the use of molecular tests in hospital practice, the application of tools for decision analysis in laboratory medicine; cost-benefit analysis in the hospital laboratory; and medicolegal aspects of EBP.

We sincerely thank all of our contributors for their willingness to participate in this project, and we hope that readers will be stimulated by the concepts that are discussed in this book. It is our wish that greater awareness of
the value of EBP will engender more comprehensive and explicit guidelines for publications in pathology. EBM also has the ability to improve education in pathology; stimulate the future development of objective and reproducible guidelines for the practice of pathology; and further the longstanding identity of pathologists as physicians who provide intellectual leadership for their colleagues.

Los Angeles, CA
Charlottesville, VA

Alberto M. Marchevsky, MD
Mark R. Wick, MD
Contents

Part I The Problem and Available Resources

1 Introduction to Evidence-Based Pathology and Laboratory Medicine ... 3
 Alberto M. Marchevsky and Mark R. Wick

2 Evidence-Based Pathology: A Stable Set of Principles for a Rapidly Evolving Specialty .. 19
 José Costa and Sarah Whitaker

3 What Is Best Evidence in Pathology? .. 27
 Peter J. Saunders and Christopher N. Otis

4 Biostatistics 101 .. 41
 Robin T. Vollmer

5 Prognostication and Prediction in Anatomic Pathology: Carcinoma of the Breast as an Illustrative Model 61
 Mark R. Wick, Paul E. Swanson, and Alberto M. Marchevsky

6 Principles of Classification and Diagnosis in Anatomic Pathology and the Inevitability of Problem Cases 95
 Michael Hendrickson

7 Evaluating Oncopathological Studies: The Need to Evaluate the Internal and External Validity of Study Results ... 121
 Michael Hendrickson and Bonnie Balzer

8 Power Analysis and Sample Sizes in Pathology Research....... 141
 Robin T. Vollmer

9 Meta-Analysis: A Statistical Method to Integrate Information Provided by Different Studies 149
 Eleftherios C. Vamvakas
10 Decision Analysis and Decision Support Systems
in Anatomic Pathology .. 173
Michael Hendrickson and Bonnie Balzer

Part II Solutions Offered by Evidence-Based Pathology
and Laboratory Medicine

11 Evidence-Based Approach to Evaluate Information
Published in the Pathology Literature and Integrate
It with Personal Experience 189
Alberto M. Marchevsky and Mark R. Wick

12 Evidence-Based Cell Pathology Revisited:
A Personal View ... 203
Kenneth A. Fleming

13 Development of Evidence-Based Diagnostic Criteria
and Prognostic/Predictive Models: Experience
at Cedars Sinai Medical Center 213
Alberto M. Marchevsky and Ruta Gupta

14 Evaluation and Reduction of Diagnostic Errors
in Pathology Using an Evidence-Based Approach 235
Raouf E. Nakhleh

15 Meta-Analysis 101 for Pathologists 245
Ruta Gupta and Alberto M. Marchevsky

16 Evidence-Based Practices in Applied
Immunohistochemistry: Dilemmas Caused
by Cross-Purposes ... 261
Mark R. Wick, Paul E. Swanson, and Alberto M. Marchevsky

17 Evidence-Based Pathology and Laboratory Medicine
in the Molecular Pathology Era: Transition of Tests
from the Research Bench into Practice 297
Jia-Perng Jennifer Wei and Wayne W. Grody

18 The Use of Decision Analysis Tools for the Selection
of Clinical Laboratory Tests: Developing Diagnostic
and Forecasting Models Using Laboratory Evidence 305
Ji Yeon Kim, Elizabeth M. Van Cott, and Kent B. Lewandrowski
19 Implementation and Benefits of Computerized Physician Order Entry and Evidence-Based Clinical Decision Support Systems ... 323
 Stacy E.F. Melanson, Aileen P. Morrison, David W. Bates, and Milenko J. Tanasijevic

20 Evidence-Based Pathology and Tort Law: How Do They Compare? ... 337
 Mark R. Wick and Elliott Foucar

Index ... 349
Contributors

Bonnie Balzer, MD, PhD Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

David W. Bates, MD, MSc Department of Medicine, Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Boston, MA, USA; Clinical and Quality Analysis, Partners HealthCare System, Inc., Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA

José Costa, MD Department of Pathology, Yale School of Medicine, New Haven, CT, USA

Kenneth A. Fleming, MA (Oxon), DPhil, FRCPATH, FRCP, MBChB Director, Oxford University Clinical Academic Graduate School, Associate Dean, Oxford Post Graduate Medicine and Dental Deanery, Oxford, UK

Elliott Foucar, MD Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA

Wayne W. Grody, MD, PhD Divisions of Medical Genetics and Molecular Pathology, Departments of Pathology and Laboratory Medicine, Pediatrics, and Human Genetics, UCLA School of Medicine, Los Angeles, CA, USA

Ruta Gupta, MD Department of Anatomic Pathology, The Canberra Hospital, ACT Pathology, Garran, ACT, Australia

Michael Hendrickson, MD Department of Pathology, Stanford University Medical Center, Stanford, CA, USA

Ji Yeon Kim, MD, MPH Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Kent B. Lewandrowski, MD Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA

Alberto M. Marchevsky, MD Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Stacy E.F. Melanson, MD, PhD Brigham and Women’s Hospital/ Massachusetts General Healthcare Center Laboratory, Harvard Medical School, Boston, MA, USA
Aileen P. Morrison, BS Department of Pathology, Clinical Laboratories Division, Brigham and Women’s Hospital, Boston, MA, USA

Raouf E. Nakhleh, MD Department of Pathology, Mayo Clinic Florida, Jacksonville, FL, USA

Christopher N. Otis, MD Department of Pathology, Baystate Medical Center, Tufts University School of Medicine, Springfield, MA, USA

Peter J. Saunders, MD Department of Pathology, Baystate Medical Center, Tufts University School of Medicine, Springfield, MA, USA

Paul E. Swanson, MD Department of Pathology, University of Washington Medical Center, Seattle, WA, USA

Milenko J. Tanasijevic, MD, MBA Department of Pathology, Brigham and Women’s Hospital and Dana Faber Cancer Institute, Harvard Medical School, Boston, MA, USA

Eleftherios C. Vamvakas, MD, PhD, MPH Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Elizabeth M. Van Cott, MD Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Robin T. Vollmer, MD, MS Department of Laboratory Medicine, VA Medical Center, Durham, NC, USA

Jia-Perng Jennifer Wei, MD, PhD Ambry Genetics, Aliso Viejo, CA, USA

Sarah Whitaker, BA Department of Pathology, Yale School of Medicine, New Haven, CT, USA

Mark R. Wick, MD Department of Pathology, University of Virginia Medical School, Charlottesville, VA, USA