Enzyme- and Transporter-Based Drug–Drug Interactions
Enzyme- and Transporter-Based Drug–Drug Interactions

Progress and Future Challenges
Preface

Germination of the thought of “Enzyme- and Transporter-Based Drug–Drug Interactions: Progress and Future Challenges” proceedings came about as part of the annual meeting of The American Association of Pharmaceutical Scientists (AAPS) that was held in San Diego in November 2007. The attendance of the workshop by more than 250 pharmaceutical scientists reflected the increased interest in the area of drug–drug interactions (DDIs), the greater focus of pharmaceutical industry, academia, and regulatory agencies, and the rapid pace of growth in knowledge. The aims of the workshop were to address the progress made in quantitatively predicting enzyme- and transporter-based DDIs as well as highlight areas where such predictions are poor or areas that remain challenging for the future. Because of the serious clinical implications, initiatives have arisen from the FDA (http://www.fda.gov/cber/gdlns/interactstud.htm) to highlight the importance of enzyme- and transporter-based DDIs.

During the past 10–15 years, we have come to realize that transporters, in addition to enzymes, play a vital role in drug elimination. Such insight has been possible because of the continued growth in PK-ADME (pharmacokinetics-absorption-distribution-metabolism-excretion) knowledge, fueled by further advances in molecular biology, greater availability of human tissues, and the development of additional and sophisticated model systems as well as sensitive assay methods for the study of drug metabolism in vitro and in vivo. This has sparked an in-depth probing into mechanisms surrounding DDIs, resulting from ligand-induced changes in nuclear receptors, as well as alterations in transporter and enzyme expression and function. Despite such advances, the in vitro and in vivo study of drug interactions and the integration of various data sets remain challenging. Therefore, it has become apparent that a proceeding that serves to encapsulate current strategies, approaches, methods, and applications is necessary.

As editors, we have assembled a number of opinion leaders and asked them to contribute chapters surrounding these issues. Many of them are the original workshop speakers whereas others had been selected specially to contribute on topics related to basic and applied information that had not been covered in other reference texts on DDIs. The resulting volume, entitled *Enzyme- and Transporter-Based Drug–Drug Interactions: Progress and Future Challenges,* comprises of four sections. Twenty-eight chapters dedicated to various topics and perspectives related to enzyme and transporter-based drug interactions are included. The chapters cover a wide range of subjects, including the use of model systems, the study of interactions through in vitro and in vivo methods, and the integration of data from various sources to improve prediction of DDIs.

The aim of this proceeding is to provide a comprehensive overview of the current state of knowledge in the field of enzyme- and transporter-based DDIs, along with future directions and challenges. It is hoped that this volume will be a valuable resource for researchers, practitioners, and regulatory authorities involved in the study and prediction of DDIs.
to the subject of metabolic and transporter-based drug–drug interactions are presented. Section I covers scientific issues and concepts that dwell on the fundamental understanding of transporters and enzymes, their function and regulation by nuclear receptors, and how these work in unison or in competition, in first-pass absorption, transport, and metabolism. Since the first mandate is an understanding of what kinds of transporters, enzymes and eliminating organs are involved in the handling of the drug in terms of deciphering the mechanisms involved in DDI, various organs including the kidney are discussed. Kinetic concepts describing clearance mechanisms and areas under the curve of not only drug but also metabolite have also been introduced. Section II pertains to methodology for the study of DDI. Due to the cost requirement in mounting in vitro vs. in vivo studies, DDI studies are often explored in vitro and the tools, the extrapolation of data in vitro to in vivo from animal to man, together with information retrieval from web data basis for transporters (www.TpResearch.com) and enzymes (www.DrugInteractionInfo.org) as well as modeling and simulations have been addressed. Section III covers the various topics that impact DDIs and spans competitive to allosteric- and mechanism-based inhibition, inductive, time-dependent alteration in drug elimination rates, inhibition of Phase II pathways, changes in volume and first-pass metabolism, and the final integration of data. Lastly, Section IV describes regulatory aspects and future developments, stressing the use of clearance concepts, PBPK models, and modeling and simulations as well as future challenges that would be faced. It is our hope that the proceedings bring about an improved appreciation of the impact of DDI and a deeper understanding of “where we had been and where we are going.”

Toronto, ON
Princeton, NJ
Macclesfield, UK

K. Sandy Pang, Ph.D.
A. David Rodrigues, Ph.D.
Raimund M. Peter, Ph.D.
Contents

Part I Determinants of Drug ADME

1 Enzymatic Basis of Phase I and Phase II Drug Metabolism .. 3
 Susan Kadlubar and Fred F. Kadlubar

2 Transporters: Importance in Drug Absorption, Distribution, and Removal 27
 Frans G.M. Russel

3 ADME Pharmacogenetics and Its Impact on Drug–Drug Interactions 51
 Reinhold Kerb and Matthias Schwab

4 Impact of Nuclear Receptors CAR, PXR, FXR, and VDR, and Their Ligands On Enzymes
 and Transporters .. 75
 Rommel G. Tirona

5 Impact of Physiological Determinants: Flow, Binding, Transporters and Enzymes on Organ and Total Body Clearances ... 107
 K. Sandy Pang, Huadong Sun, and Edwin C.Y. Chow

Part II Methods for the Study of Drug–Drug Interactions

6 In Silico Approaches to Predict DDIs .. 151
 Chad L. Stoner, Michael R. Wester, and Benjamin J. Burke

7 In Vitro Techniques to Study Drug–Drug Interactions of Drug Metabolism: Cytochrome P450 ... 169
 J. Brian Houston and Aleksandra Galetin

8 The In Vitro Characterization of Inhibitory Drug–Drug Interactions Involving UDP-Glucuronosyltransferase .. 217
 John O. Miners, Thomas M. Polasek, Peter I. Mackenzie, and Kathleen M. Knights
9 In Vitro Techniques to Study Transporter-Based DDI
 Kelly Bleasby, Xiaoyan Chu, and Raymond Evers

10 In Vitro Techniques to Study Drug–Drug Interactions Involving Transport: Caco-2 Model for Study of P-Glycoprotein and Other Transporters
 William R. Proctor, Xin Ming, and Dhiren R. Thakker

11 Use of In Vivo Animal Models to Assess Drug–Drug Interactions
 Thomayant Prueksaritanont

12 Extrapolation of In Vitro Metabolic and P-Glycoprotein-Mediated Transport Data to In Vivo by Modeling and Simulations
 Motohiro Kato, Yoshihisa Shitara, Masato Kitajima, Tatsuhiko Tachibana, Masaki Ishigai, Toshiharu Horie, and Yuichi Sugiyama

13 Translation of In Vitro Metabolic Data to Predict In Vivo Drug–Drug Interactions: IVIVE and Modeling and Simulations
 Amin Rostami-Hodjegan

14 Absorption Models to Examine Bioavailability and Drug–Drug Interactions in Humans
 Ahsan Naqi Rizwan and Kim L.R. Brouwer

15 Management of Drug Interactions of New Drugs in Multicenter Trials Using the Metabolism and Transport Drug Interaction Database©
 Houda Hachad, Isabelle Ragueneau-Majlessi, and René H. Levy

16 Web-Based Database as a Tool to Examine Drug–Drug Interactions Involving Transporters
 Kazuya Maeda, Yoshihisa Shitara, Toshiharu Horie, and Yuichi Sugiyama

Part III Impact of Drug–Drug Interactions

17 Drug Disposition and Drug–Drug Interactions: Importance of First-Pass Metabolism in Gut and Liver
 Catherine K. Yeung, Ping Zhao, Danny D. Shen, and Kenneth E. Thummel

18 Transporter-Based Drug–Drug Interactions and Their Effect on Distribution Volumes
 Anita Grover and Leslie Z. Benet
19 Inactivation of Human Cytochrome P450 Enzymes and Drug–Drug Interactions ... 473
 R. Scott Obach, Odette A. Fahmi, and Robert L. Walsky

20 Allosteric Enzyme- and Transporter-Based Interactions .. 497
 Murali Subramanian and Timothy S. Tracy

21 The Impact and In Vitro to In Vivo Prediction of Transporter-Based Drug–Drug Interactions in Humans 517
 Jashvant D. Unadkat, Brian J. Kirby, Christopher J. Endres, and Joseph K. Zolnerciks

22 Herbal Supplement-Based Interactions ... 555
 Guohua An and Marilyn E. Morris

23 Anticipating and Minimizing Drug Interactions in a Drug Discovery and Development Setting: An Industrial Perspective . 585
 Ragini Vuppugalla, Sean Kim, Tatyana Zvyaga, Yong-hae Han, Praveen Balimane, Punit Marathe, and A. David Rodrigues

24 Clinical Studies of Drug–Drug Interactions: Design and Interpretation 625
 David J. Greenblatt and Lisa L. von Moltke

25 Toxicological Consequences of Drug–Drug Interactions .. 651
 Rachel J. Walsh, Abhishek Srivastava, Daniel J. Antoine, Dominic P. Williams, and B. Kevin Park

Part IV Regulatory Aspects and Future Developments Involving DDI

26 Complex Drug Interactions: Significance and Evaluation .. 667
 Ping Zhao, Lei Zhang, and Shiew-Mei Huang

27 Drug–Drug Interactions: Communicating Post–market Drug Safety Information in the USA .. 693
 Soraya Madani and Helen Winter

28 Drug–Drug Interactions: What Have We Learned and Where Are We Going? 701
 K. Sandy Pang, Raimund M. Peter, and A. David Rodrigues

Subject Index .. 723
Contributors

Guohua An Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY, USA

Daniel J. Antoine Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

Praveen Balimane Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA

Leslie Z. Benet Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, CA, USA

Kelly Bleasby Department of Metabolism and Pharmacokinetics, Merck & Co., In Vitro Technologies, Rahway, NJ, USA

Kim L. R. Brouwer Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Benjamin J. Burke Department of Worldwide Medicinal Chemistry, Pfizer Inc., Global Research & Development, La Jolla, CA., USA

Edwin C.Y. Chow Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada

Xiaoyan Chu Department of Metabolism and Pharmacokinetics, Merck & Co., In Vitro Technologies, Rahway, NJ, USA

Christopher J. Endres Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Raymond Evers Department of Drug Metabolism and Pharmacokinetics, Merck & Co., In Vitro Technologies, Rahway, NJ, USA

Odette A. Fahmi Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Pfizer Inc., Global Research & Development, Groton, CT, USA
Aleksandra Galetin School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK

David J. Greenblatt Department of Pharmacology & Experimental Therapeutics, Tufts University School of Medicine, Boston, MA, USA

Anita Grover Department of Biopharmaceutical Sciences, University of California, San Francisco, CA, USA

Houda Hachad Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Yong-hae Han Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA

Toshiharu Horie Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan

J. Brian Houston School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK

Shiew-Mei Huang Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA

Masaki Ishigai Chugai Pharmaceutical Co. Ltd., Gotemba, Shizuoka, Japan

Fred F. Kadlubar Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Susan Kadlubar Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Motohiro Kato Chugai Pharmaceutical Co. Ltd., Gotemba, Shizuoka, Japan

Reinhold Kerb Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany

Sean Kim Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Wallingford, CT, USA

Brian J. Kirby Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Masato Kitajima Fujitsu Kyushu Systems Ltd., Sawara-ku, Fukuoka, Japan

Kathleen M. Knights Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia

René H. Levy Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Peter I. Mackenzie Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia
Soraya Madani Novartis Pharmaceuticals Corp, East Hanover, NJ, USA

Kazuya Maeda Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Punit Marathe Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA

John O. Miners Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia

Xin Ming Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Marilyn E. Morris Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY, USA

R. Scott Obach Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Pfizer Inc., Global Research & Development, Groton, CT, USA

K. Sandy Pang Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada

B. Kevin Park Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

Raimund M. Peter Discovery Drug Metabolism and Pharmacokinetics, CVGI Department, AstraZeneca UK, Macclesfield, Cheshire, UK

Thomas M. Polasek Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia

William R. Proctor Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Thomayant Prueksaritanont Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, West Point, PA, USA

Isabelle Ragueneau-Majlessi Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Ahsan Naqi Rizwan Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

A. David Rodrigues Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Co., Princeton, NJ, USA

Amin Rostami-Hodjegan Department of Human Metabolism (M129), The Medical School, University of Sheffield, Sheffield, South Yorkshire, UK
Frans G.M. Russel Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, Netherlands

Matthias Schwab Dr Margarete Fischer Bosch Institute of Clinical Pharmacology, University of Tübingen Stuttgart, Germany

Danny D. Shen Department of Pharmacy, University of Washington, Seattle, WA, USA

Yoshihisa Shitara Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan

Abhishek Srivastava Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

Chad L. Stoner Department of Pharmacokinetics and Drug Metabolism, Pfizer Inc., Global Research & Development, La Jolla, CA, USA

Murali Subramanian Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA

Yuichi Sugiyama Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Huadong Sun NoAb BioDiscoveries Inc., Mississauga, ON, Canada

Tatsuhiko Tachibana Chugai Pharmaceutical Co. Ltd., Gotemba, Shizuoka, Japan

Dhiren R. Thakker Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Kenneth E. Thummel Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Rommel G. Tirona Division of Clinical Pharmacology, Department of Medicine, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London Health Sciences Centre – University Hospital, London, ON, Canada

Timothy S. Tracy Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA

Jashvant D. Unadkat Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA

Ragini Vuppugalla Metabolism and Pharmacokinetics, Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA

Lisa L. von Moltke Millenium Pharmaceutical Institute, Cambridge, MA, USA
Rachel J. Walsh Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

Robert L. Walsky Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Pfizer Inc., Global Research & Development, Groton, CT, USA

Michael R. Wester Department of Pharmacokinetics and Drug Metabolism, Pfizer Inc., Global Research & Development, La Jolla, CA, USA

Dominic P. Williams Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK

Helen Winter Department of Clinical Pharmacology, Global Alliance for TB Drug Development, New York, NY, USA

Catherine K. Yeung Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Lei Zhang Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA

Ping Zhao Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA

Joseph K. Zolnerciks Department of Pharmaceutics, University of Washington, Seattle, WA, USA

Tatyana Zvyaga Bristol-Myers Squibb Co., Wallingford, CT, USA
About the Editors

K. Sandy Pang Ph.D. is a professor of Pharmacy and Pharmacology of the Faculties of Pharmacy and Medicine at the University of Toronto. She received her B.S. (Pharmacy) from the University of Toronto, Ph.D. (Pharmaceutical Chemistry) from UCSF, and post-doctoral training with Dr. James R. Gillette as a Fogarty International Fellow at the National Institutes of Health. Dr. Pang’s work spans the fields of pharmacokinetics, drug metabolism and transporters, and their regulation, and her works are published in over 200 original articles and chapters. Dr. Pang has served on various committees for NIH: ASPET, AAPS, ISSX, and AAAS, and is the editor-in-chief of Biopharmaceutics and Drug Disposition and a member of the editorial review boards of the American Journal of Physiology, Journal of Pharmacology and Experimental Therapeutics, Drug Metabolism and Disposition, Xenobiotica, and AAPS Journal. She was the recipient of the NIH Research Career Development Award, Faculty Development award from the Medical Research Council of Canada, the McNeil Award from the Faculties of Pharmacies in Canada, and the Research Achievement Award in Pharmacokinetics, Pharmacodynamics and Drug Metabolism from the American Association of Pharmaceutical Scientists (AAPS).

A. David Rodrigues is the Executive Director of the Metabolism and Pharmacokinetics Department, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey. The author and co-author of over 90 peer-reviewed journal articles and book chapters, Dr. Rodrigues sits on the Editorial Board of two journals (Drug Metabolism and Disposition, and Xenobiotica) and is a member of the International Society for the Study of Xenobiotics (ISSX) and the American Association of Pharmaceutical Scientists (AAPS). He serves as a member of the Scientific Affairs Committee (ISSX) and has been elected Fellow (AAPS). He received the B.Sc. degree (1984) in applied science from Kingston-upon-Thames Polytechnic, Surrey, England, and the Ph.D. degree (1988) in biochemistry from the University of Surrey, Guildford, England.

Raimund M. Peter is an associate director of the Drug Metabolism and Pharmacokinetics Section, Cardiovascular and Gastrointestinal Research Department, AstraZeneca, Alderley Park, United Kingdom. The author and
co-author of 20 peer-reviewed journal articles, Dr. Peter is the current chair-
man of the Drug Metabolism Focus Group of AAPS and is a member of
the International Society for the Study of Xenobiotics (ISSX), the American
Association of Pharmaceutical Scientists (AAPS), and the American Chemical
Society. He received the Dipl.-Chem. degree (1986) in chemistry and the Ph.D.
degree (1992) in chemistry and biochemical pharmacology from the University of
Erlangen-Nürnberg, Germany.