NONLINEAR ANALYSIS AND VARIATIONAL PROBLEMS
Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization has been a basic tool in all areas of applied mathematics, engineering, medicine, economics and other sciences.

The series *Optimization and Its Applications* publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository works that focus on algorithms for solving optimization problems and also study applications involving such problems. Some of the topics covered include nonlinear optimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multiobjective programming, description of software packages, approximation techniques and heuristic approaches.
NONLINEAR ANALYSIS AND VARIATIONAL PROBLEMS

In Honor of George Isac

Edited By

PANOS M. PARDALOS
Department of Industrial and Systems Engineering,
University of Florida,
Gainesville, Florida

THEMISTOCLES M. RASSIAS
Department of Mathematics,
National Technical University of Athens,
Athens, Greece

AKHTAR A. KHAN
School of Mathematical Sciences,
Rochester Institute of Technology,
Rochester, New York

Springer
With our deepest appreciation, we dedicate this volume to the memory of our dearest friend and eminent mathematician, George Isac.
Preface

The papers published in this volume focus on some of the most recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and various other important topics of nonlinear analysis and optimization.

This volume was initially planned to celebrate Professor George Isac’s 70th birthday by bringing together research scientists from mathematical domains which have long benefited from Isac’s active research passion. Unfortunately, George Isac passed away in February 2009 at the age of 69.

George Isac received his Ph.D. in 1973 from the Institute of Mathematics of the Romanian Academy of Sciences. He made outstanding contributions in several branches of pure and applied mathematics, including complementarity theory, variational inequalities, fixed point theory, scalar and vector optimization, theory of cones, eigenvalue problems, convex analysis, variational principles and regularization methods, as well as a number of other topics. In his long and outstanding career, he wrote more than 200 papers and 13 books. Professor Isac was an avid traveler who visited more than 70 universities around the globe and delivered approximately 180 research presentations. He also authored seven books on poetry. During his scientific career he collaborated with numerous mathematicians. His research papers contain very deep, original and beautiful results. Through his significant contributions, he earned a distinguished position and became an internationally renowned leading scholar in his research fields. Professor Isac’s prolific career was supported by the love and affection of his wife, Viorica. In fact her dedication, was so strong that she typed most of Isac’s manuscripts for his papers and books. We offer our sincerest sympathies to Viorica Isac on her monumental loss. Her husband was not only a wonderful mathematician but also a outstanding human being who will be greatly missed.

The submitted works of eminent research scientists from the international mathematical community are dedicated to the memory of this leading mathematician and very special colleague and friend, George Isac.
The contributions are organized into two parts. Part I focuses on selected topics in nonlinear analysis, in particular, stability issues for functional equations, and fixed point theorems.

In Chapter 1, Agratini and Andrica present a survey focusing on linear positive operators having the degree of exactness null and fixing the monomial of the second degree.

In their contribution, Amyari and Sadeghi present a Mazur–Ulam type theorem in non-Archimedean strictly convex 2-normed spaces and give some properties of mappings on non-Archimedean strictly 2-convex 2-normed spaces.

The emphasis of Cădariu and Radu is on extending some results of Isac and Rassias on ψ-additive mappings by giving a stability theorem for functions defined on generalized α-normed spaces and taking values in β-normed spaces.

The objective of Constantinescu’s contribution is on some investigates of \(W^\ast \)-tensor products of \(W^\ast \)-algebras.

In his contribution, Dragomir introduces a perturbed version of the median principle and presents its applications for various Riemann–Stieltjes integral and Lebesgue integral inequalities.

M. Eshaghi-Gordji et al. undertake the issues related to the stability of a mixed type additive, quadratic, cubic and quartic functional equation.

A short survey about the Hyers–Ulam stability of ψ-additive mappings is given by Găvruta and Găvruta in Chapter 7.

In their contribution, Jun and Kim investigate the generalized Hyers–Ulam stability problem for quadratic functional equations in several variables and obtain an asymptotic behavior of quadratic mappings on restricted domains.

The focus of Jung and Rassias is to apply the fixed point method for proving the Hyers–Ulam–Rassias stability of a logarithmic functional equation.

In their work, Park and Cui use the fixed point method to prove the generalized Hyers–Ulam stability of homomorphisms in \(C^\ast \)-algebras and Lie \(C^\ast \)-algebras and of derivations of \(C^\ast \)-algebras and Lie \(C^\ast \)-algebras for the 3-variable Cauchy functional equation.

In their paper, Park and Rassias use the fixed point method to prove the generalized Hyers–Ulam stability of certain functional equations in real Banach spaces.

The focus of Precup is on presenting new compression and expansion type critical point theorems in a conical shell of a Hilbert space identified with its dual.

The aim of Rus’s contribution is to give some Hyers–Ulam–Rassias stability results for Volterra and Fredholm integral equations by using some Gronwall lemmas.

In his contribution, Turinici presents a detailed study of Brezis–Browder’s principle. He shows that the version of Brezis–Browder’s principle for general separable sets is a logical equivalent of the Zorn–Bourbaki maximality result. In addition, several other interesting connections are established.

The second part of this volume discusses several important aspects of vector optimization and non-smooth optimization, as well as variational problems.

In Chapter 15, Balaj and O’Regan make use of the Kakutani–Fan–Glicksberg fixed point theorem to give an existence theorem for a generalized vector quasi-equilibrium problem.
In their contribution, Cojocaru et al. give a new method of tracking the dynamics of an equilibrium problem using an evolutionary variational inequalities and hybrid dynamical systems approach. They apply their approach to describe the time evolution of a differentiated product market model under incentive policies with a finite life span.

In Chapter 17, Daniele et al. give an overview of recent developments in the theory of generalized projections both in non-pivot Hilbert spaces and strictly convex and smooth Banach spaces. They also study the equivalence between solutions of variational inequalities and critical points of projected dynamical systems.

Eichfelder and Jahn’s aim is to present various foundations of a new field of research in optimization unifying semidefinite and copositive programming, called set-semidefinite optimization.

Giannessi and Khan extend the notion of image of a variational inequality by introducing the notion of an envelope for a variational inequality.

In Chapter 20, Goeleven develops a new approach to study a class of nonlinear generalized ordered complementarity problems.

Ha’s chapter presents a unified framework for the study of strong efficient solutions, weak efficient solutions, positive proper efficient solutions, Henig global proper efficient solutions, Henig proper efficient solutions, super-efficient solutions, Benson proper efficient solutions, Hartley proper efficient solutions, Hurwicz proper efficient solutions and Borwein proper efficient solutions of a set-valued optimization problem with or without constraints.

The contribution of Isac and Németh presents some mean value theorems for the scalar derivatives which are then used to develop a new method applicable to the study of the existence of nontrivial solutions of complementarity problems.

The chapter by Isac and Tammer presents new necessary conditions for approximate solutions of vector-valued optimization problems in general spaces by introducing an axiomatic approach for a scalarization scheme.

Lukkassen et al. undertake homogenization of sequences of integral functionals with natural growth conditions. Some means are analyzed and used to discuss some fairly new bounds for the homogenized integrand corresponding to integrands which are periodic in the spatial variable. Several applications are given.

In their contribution, Moldovan and Gowda employ duality and complementarity ideas and Z-transformations as well as discuss equivalent ways of describing the existence of common linear/quadratic Lyapunov functions for switched linear systems.

Motreanu’s focus is on the necessary conditions of optimality for general mathematical programming problems on a product space. Interesting applications to an optimal control problem governed by an elliptic differential inclusion are given.

In his contribution, Pascali’s focus is on studying variational inequalities with S-mappings.

In Chapter 28, a new completely generalized co-complementarity problem for fuzzy mappings is introduced. By using the definitions of p-relaxed accretive and p-strongly accretive mappings, the authors propose an iterative algorithm for computing the approximate solutions, and establish its convergence.
The contribution of Wolkowicz is aimed to illustrate how optimization can be used to derive known and new theoretical results about perturbations of matrices and sensitivity of eigenvalues.

It is our immense pleasure to express our utmost and deepest gratitude to all of the scientists who, by their works, participated in this tribute to honor Professor George Isac. We are grateful to the referees of the enclosed contributions. One of the editors (AAK) expresses his sincere gratitude to Prof. Sophia Maggelakis and Prof. Patricia Clark of RIT and Prof. G. Jailan Zalmai of NMU for their kindness and support.

Panos M. Pardalos
Themistocles M.Rassias
Akhtar A. Khan
May, 2009
Biographical Sketch of George Isac

George Isac was born on April 1, 1940, in Filipesti, Romania, a village in the district of Braila. His father was a village schoolteacher who fought in the First World War where he lost an arm. His mother was a housewife. George was the youngest of three children—he had an older sister and an older brother.

George enjoyed a happy childhood as evoked in his nostalgia-filled poems. His poetry has had much success in Romanian communities all over the world. It was said that on the first day of class, on the way to school, his father told him: I would like you to be the best student in your class. Young George took his father’s wish as an order and he strived with all his power to maintain this status during all of his
student years. He remained deeply attached not only to his birth village but also to
the village school. After the fall of the communist regime in Romania, he visited the
school several times and funded a scholarship to be granted every year to the best
student.

In 1955, George was admitted to the very prestigious college Nicolaie Balcescu
in Braila. The impressive number of great Romanian intellectuals who have gradu-
ated from that college is certainly due to the fact that the college had exceptionally
good teachers. One of them was the Romanian literature teacher who believed that
George was a real artistic gem and who was certain that George would follow a
higher education in the arts. However, George realized that under the communist
regime, it was too difficult for people to succeed in such a career without making
major moral concessions and he was not willing to make such concessions.

So it was, facing the prospect of producing a big disappointment to his favorite
teacher, he made the dramatic decision to enroll in the mathematics program at
the University of Bucharest. Still, he returned every year, full of emotion, to his
beloved college in Braila to long walks in Braila’s parks and along the banks of the
Danube River. It was there that he met Viorica Georgescu, who on May 8, 1965,
became his beloved wife and his inspiration for countless love poems that were
filled with enormous gratitude to her. Viorica gave him the most precious gift one
could receive: two wonderful children: Catalin and Roxana—the pride of the Isac
family.

At the University of Bucharest, George was a remarkable student and upon grad-
uation he was offered a position in the Department of Analysis, whose chairman at
that time was George Marinescu. There was an immediate and deep chemistry be-
tween the two Georges and they soon began to work together on a pioneering book
on analysis on ultra-metric fields (published in 1976). George Isac had wonderful
memories regarding his mentor George Marinescu and started to write a biography
about him that unfortunately remains unfinished.

George and a friend, Ion Ichim, were working part-time at the Institute of Math-
ematics, where I was a senior researcher nominated to direct doctoral studies. They
both came to my office one day and asked me to accept them as students in a Ph.D.
program. Knowing their value, I joyfully accepted them, as well as their subjects of
research: the area of functional analysis for George and the area of potential theory
for Ion.

In the meantime, in February 1972 I left Romania. At that time, the work on
their Ph.D. thesis was advanced but unfinished. Officially, Professor Marinescu was
nominated to take charge of directing their thesis, but due to his health problems,
my friend Aurel Cornea performed the real work. It was a pleasant job for him and
he offered them not only his help but also his friendship after graduation.

George Isac was offered a contract with University of Kinshasa in Zaire and
decided to accept it in order to escape to the West. Before his departure he paid a visit
to Aurel Cornea and told him about his intentions, demonstrating great confidence
in him, given the fact that the country was studded with secret police informers. He
mentioned that his intention was to go alone at first given the tough conditions there
and then bring his family after a while.
“Are you crazy?” asked Aurel. “Don’t you know what a source of blackmail a family left behind is for the secret police?” George insisted that his plan was sound, since he didn’t want to expose his family to hardship. Aurel walked thoughtfully through the room, then suddenly stopped and said: “This is what I have to say: Uncle George (a slightly ironical, yet kind address), take your family and go there. If it is too harsh, then put it on my account.”

George obeyed Aurel’s advice and fortunately had no regrets on his decision. He had an amazingly successful career in Canada, a country in which his family enjoyed every moment, and he was forever grateful to his friend Aurel for the advice to not leave them behind. Except for a short period of time at the University of Sherbrook, he always worked for the Royal Military College, first in Saint-Jean-sur-Richelieu, Quebec, and later in Kingston. He was also associated with Queen’s University, where he directed graduate student work.

While he was still in Romania, he started to pay attention to applied mathematics, a field in which he was able to use his functional analysis knowledge. He taught some courses in that field. In Canada, George evolved in his field and he achieved many accomplishments in applied mathematics, solving problems of complementarity, fixed point theorems with applications to decision theory, game theory, optimal control, Pareto problems, and nonlinear analysis, etc. Some basic concepts of these domains such as nuclear cones have been introduced by him.

George’s record of lifelong publications numbers over 200 papers and authorship or coauthorship of 13 books. There are around 640 quotations of his work in collaboration with 258 mathematicians. The world mathematics community sanctioned his mathematics contribution and he appeared as an invited speaker at countless international conferences and congresses. He was a member of the editorial committees for many mathematics periodicals. He received awards of excellence in mathematics, such as the “Spiru Haret” prize of the Romanian Academy of Science in 2003. He was also nominated for the title of Doctor Honoris Causa of the University Babeș-Bolyai, Cluj-Napoca, Romania.

One’s cannot talk about George Isac without saying something related to his poems, which were an important component of his personality. He started to write poetry only later in his life, probably because of the stress he experienced or because of an excessively busy mathematics schedule that did not allow him the peace of mind necessary for such an activity. However, he carried with him all of his life a kind of poetic archive, which overflowed tempestuously when the right time came, producing an impressive seven volumes of poems in just one decade, the eighth volume waiting for posthumous publication.

George’s poems are dominated by nostalgic memories of early childhood and adolescence. His birth village appears as the sacred place where forefathers’ traditions are still alive with colors and scents specific to every season, with flowers, birds, bugs, with rivers, cemeteries, wheat fields, vineyards, forest hills, and the usual childhood preoccupations such as flower picking in spring or tobogganing in winter. A lot of poems are dedicated to his parents’ house featuring an impressive garden and a very attentive mother. However, there are also dominant philosophical
problems, such as those related to life and death, treated mainly through the sieve of ancient oriental philosophy that he studied thoroughly.

As the religious man he was, George tackled the problem of life after death, trying to use poetic metaphors in order to revive in us the shiver of the absolute truth. There is also advice to not give too much importance to the superficial aspects of life, but rather concentrate on those that are deep and essential. He makes an acid indictment of our modern society, which shows signs of moral decadence.

George’s dreadful sickness surprised him while he was in full stride, which made it even worse. He had all kinds of mathematics projects in mind or under way: a new book, the biography of George Marinescu, and a book of personal recollections related to the communist era in Romania, including a recollection of his father’s tragic experience. It was not meant to be, and I regret that these marvelous projects are now forever lost.

Through his mathematics research, through his poems and through his teaching, George Isac brought a lot of light into this world. He lived life fully, offering us a rich harvest, similar to that of his birthplace fields described in his poems. Now, a new name must be added to the long list of science or arts personalities on the crown of Nicolae Balcescu College: that of George Isac, renowned personality in science and arts.

Benglen, April 2009

Corneliu Constantinescu
Contents

Preface .. vii
Biographical Sketch of George Isac xi
List of Contributors ..xxii

Part I Nonlinear Analysis

1 Discrete Approximation Processes of King’s Type 3
 Octavian Agratini and Tudor Andrica
 1.1 Introduction ... 3
 1.2 Further Results on V_n Type Operators 4
 1.3 A General Class in Study 7
 References .. 11

2 Isometrics in Non-Archimedean Strictly Convex and Strictly
 2-Convex 2-Normed Spaces 13
 Maryam Amyari and Ghadir Sadeghi
 2.1 Introduction and Preliminaries 13
 2.2 Non-Archimedean Strictly Convex 2-Normed Spaces 15
 2.3 Non-Archimedean Strictly 2-Convex 2-Normed Spaces 18
 References .. 21

3 Fixed Points and Generalized Stability for ψ-Additive Mappings
 of Isac–Rassias Type .. 23
 Liviu Cădariu and Viorel Radu
 3.1 Introduction ... 23
 3.2 Stability Properties for Cauchy Equation
 in β-Normed Spaces 25
 3.3 Other Examples and Applications 31
 References .. 35
4 A Remark on W*-Tensor Products of W*-Algebras 37
Corneliu Constantinescu
4.1 Introduction .. 37
4.2 The Ordered Involutive Banach Space 39
4.3 The Multiplication .. 45
References .. 52

5 The Perturbed Median Principle for Integral Inequalities
with Applications .. 53
S.S. Dragomir
5.1 Introduction .. 53
5.2 A Perturbed Version of the Median Principle 56
5.3 Some Examples for 0th-Degree Inequalities 57
5.4 Inequalities of the 1st-Degree 62
References .. 63

6 Stability of a Mixed Type Additive, Quadratic, Cubic and Quartic
Functional Equation .. 65
M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, M.S. Moslehian,
and S. Zolfaghari
6.1 Introduction .. 66
6.2 General Solution ... 68
6.3 Stability ... 74
References .. 79

7 ψ-Additive Mappings and Hyers–Ulam Stability 81
P. Găvruţa and L. Găvruţa
7.1 Introduction .. 81
7.2 Results ... 82
References .. 85

8 The Stability and Asymptotic Behavior of Quadratic Mappings
on Restricted Domains ... 87
Kil-Woung Jun and Hark-Mahn Kim
8.1 Introduction .. 87
8.2 Approximately Quadratic Mappings 89
8.3 Quadratic Mappings on Restricted Domains 93
References .. 96

9 A Fixed Point Approach to the Stability of a Logarithmic
Functional Equation .. 99
Soon-Mo Jung and Themistocles M. Rassias
9.1 Introduction .. 99
9.2 Preliminaries .. 101
9.3 Hyers–Ulam–Rassias Stability 102
9.4 Applications .. 106
References .. 108
14.2.1 Introduction ... 169
14.2.2 Logical Equivalents of Brezis–Browder’s Principle 170
14.2.3 Asymptotic Extensions 171
14.2.4 Convergence and Uniform Versions 173
14.2.5 Zorn Maximality Principles 178
14.3 Relative KST Statements 180
14.3.1 Introduction ... 180
14.3.2 Maximal Principles 181
14.3.3 Transitive (Pseudometric) Versions 184
14.3.4 Main Results ... 186
14.3.5 Extended KST Statements 189
References .. 193

Part II Variational Problems

15 A Generalized Quasi-Equilibrium Problem 201
Mircea Balaj and Donal O’Regan
15.1 Introduction ... 201
15.2 Preliminaries ... 202
15.3 Main Result ... 203
15.4 Particular Cases of Theorem 15.8 205
15.5 Applications ... 209
References .. 210

16 Double-Layer and Hybrid Dynamics of Equilibrium Problems: Applications to Markets of Environmental Products 213
16.1 Introduction ... 213
16.2 Dynamic Equilibrium Problems and Variational Inequalities 215
16.2.1 General Formulation 215
16.3 Double-Layer Dynamics and Hybrid Dynamical Systems 220
16.3.1 DLD .. 221
16.3.2 Tracking Equilibrium Dynamics: Hybrid Systems Approach ... 222
16.4 Dynamics of Environmental Product Markets 224
16.4.1 The Static Model .. 224
16.4.2 Dynamic Equilibrium Model: EVI Formulation 226
16.4.3 Example ... 227
16.4.4 Dynamic Disequilibrium Model: DLD Formulation 230
16.5 Conclusions and Acknowledgments 232
References .. 232

17 A Panoramic View on Projected Dynamical Systems 235
Patrizia Daniele, Sofia Giuffrê, Antonino Maugeri, and Stephane Pia
17.1 Introduction ... 235
17.2 General Background Material 237
17.2.1 Spaces .. 237
17.2.2 Cones and Properties 241
17.2.3 Projectors .. 242
17.2.4 Weighted Traffic Equilibrium Problem 245
17.2.5 Time-Dependent Equilibria 246
17.3 Projected Dynamical Systems in Hilbert Spaces 247
 17.3.1 Projected Dynamical Systems in Pivot Hilbert Spaces . 247
 17.3.2 Projected Dynamical Systems in Non-pivot Hilbert Spaces .. 248
17.4 Projected Dynamical Systems in Banach Spaces 249
 17.4.1 The Strictly Convex and Uniformly Smooth Case 250
 17.4.2 Projected Dynamical Systems and Unilateral Differential Inclusions 251
17.5 Bridge with Variational Inequalities 253
17.6 Conclusion .. 256
References ... 256

18 Foundations of Set-Semidefinite Optimization 259
Gabriele Eichfelder and Johannes Jahn
18.1 Introduction ... 259
18.2 Applications of Set-Semidefinite Optimization 261
 18.2.1 Semidefinite Optimization 261
 18.2.2 Copositive Optimization 262
 18.2.3 Second-Order Optimality Conditions 264
 18.2.4 Semi-infinite Optimization 265
18.3 Set-Semidefinite Cone 267
 18.3.1 Properties of the Set-Semidefinite Cone 267
 18.3.2 Dual and Interior of the Set-Semidefinite Cone 271
18.4 Optimality Conditions 274
18.5 Nonconvex Duality 278
18.6 Future Research 282
References ... 283

19 On the Envelope of a Variational Inequality 285
F. Giannessi and A.A. Khan
19.1 Introduction ... 285
19.2 Auxiliary Variational Inequality 287
19.3 A Particular Variational Inequality 290
References ... 293

20 On the Nonlinear Generalized Ordered Complementarity Problem .. 295
D. Goeleven
20.1 Introduction ... 295
20.2 A Spectral Condition for the Generalized Ordered Complementarity Problem 297
20.3 Existence and Uniqueness Results 300
References ... 303
21 Optimality Conditions for Several Types of Efficient Solutions of Set-Valued Optimization Problems 305
 T.X.D. Ha
 21.1 Introduction ... 305
 21.2 Subdifferentials, Derivatives and Coderivatives 307
 21.3 Some Concepts of Efficient Points 309
 21.4 Optimality Conditions for Set-Valued Optimization Problem ... 316
 References .. 323

22 Mean Value Theorems for the Scalar Derivative and Applications 325
 G. Isac and S.Z. Németh
 22.1 Introduction ... 325
 22.2 Preliminaries... 326
 22.3 Scalar Derivatives and Scalar Differentiability 327
 22.3.1 Computational Formulae for the Scalar Derivatives 328
 22.4 Mean Value Theorems 329
 22.5 Applications to Complementarity Problems 331
 22.6 Comments ... 340
 References .. 340

23 Application of a Vector-Valued Ekeland-Type Variational Principle for Deriving Optimality Conditions 343
 G. Isac and C. Tammer
 23.1 Introduction .. 343
 23.2 Properties of Cones 345
 23.3 An Ekeland-Type Variational Principle for Vector Optimization
 Problems .. 349
 23.4 Nonlinear Scalarization Scheme 350
 23.5 Differentiability Properties of Vector-Valued Functions 353
 23.6 Necessary Optimality Conditions for Vector Optimization
 Problems in General Spaces Based on Directional Derivatives 357
 23.7 Vector Optimization Problems with Finite-Dimensional Image
 Spaces ... 363
 References .. 364

 Dag Lukkassen, Annette Meidell, and Lars-Erik Persson
 24.1 Introduction ... 367
 24.2 Preliminaries ... 370
 24.3 Some Nonlinear Bounds of Classical Type 371
 24.4 Some Useful Means of Power Type 375
 24.4.1 A Particular Power Type Mean 376
 24.4.2 Composition of Power Means 380
 24.5 Nonlinear Bounds .. 386
 24.6 Further Results for the Case $p = 2$ 398
24.7 The Reiterated Cell Structure 403
 24.7.1 The Scalar Case 404
 24.7.2 The Vector-Valued Case 405
24.8 Bounds Related to a Reynold-Type Equation 407
24.9 Some Final Comments 412
References .. 412

25 On Common Linear/Quadratic Lyapunov Functions for Switched
 Linear Systems ... 415
 Melania M. Moldovan and M. Seetharama Gowda
 25.1 Introduction ... 415
 25.2 Preliminaries ... 417
 25.2.1 Matrix Theory Concepts 417
 25.2.2 Z-Transformations 418
 25.3 Complementarity Ideas 421
 25.4 Duality Ideas .. 422
 25.5 Positive Switched Linear Systems 425
References .. 428

26 Nonlinear Problems in Mathematical Programming and Optimal
 Control ... 431
 Dumitru Motreanu
 26.1 Introduction ... 431
 26.2 Main Result ... 432
 26.3 Proof of Theorem 26.1 434
 26.4 An Application 436
References .. 440

27 On Variational Inequalities Involving Mappings of Type (S) 441
 Dan Pascali
 27.1 Main Results ... 441
References .. 448

28 Completely Generalized Co-complementarity Problems Involving
 p-Relaxed Accretive Operators with Fuzzy Mappings 451
 Abul Hasan Siddiqi and Syed Shakaib Irfan
 28.1 Introduction ... 451
 28.2 Background of Problem Formulation 452
 28.3 The Characterization of Problem and Solutions 454
 28.4 Iterative Algorithm and Pertinent Concepts 455
 28.5 Existence and Convergence Result for CGCCPFM 458
References .. 462
29 Generating Eigenvalue Bounds Using Optimization 465
 Henry Wolkowicz
 29.1 Introduction .. 465
 29.1.1 Outline ... 467
 29.2 Optimality Conditions 467
 29.2.1 Equality Constraints 467
 29.2.2 Equality and Inequality Constraints 470
 29.2.3 Sensitivity Analysis 472
 29.3 Generating Eigenvalue Bounds 473
 29.4 Fractional Programming 484
 29.5 Conclusion .. 489
References .. 490
List of Contributors

Octavian Agratini
Babeș-Bolyai University, Faculty of Mathematics and Computer Science, 400084 Cluj-Napoca, Romania, e-mail: agratini@math.ubbcluj.ro

Maryam Amyari
Department of Mathematics, Faculty of Science, Islamic Azad University-Mashhad Branch, Mashhad 91735, Iran, e-mail: amyari@mshdiau.ac.ir and maryam_amyari@yahoo.com

Tudor Andrica
Babeș-Bolyai University, Faculty of Mathematics and Computer Science, 400084 Cluj-Napoca, Romania, e-mail: tudor_an@yahoo.com

Mircea Balaj
Department of Mathematics, University of Oradea, 410087 Oradea, Romania, email: mbalaj@uoradea.ro and mbalaj@uoradea.ro

M. Cojocaru
Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada, e-mail: mcojocar@uoguelph.ca

Liviu Cădariu
“Politehnica” University of Timișoara, Department of Mathematics, Piața Victoriei 2, 300006, Timișoara, Romania, e-mail: liviu.cadariu@mat.upt.ro and lcadariu@yahoo.com

Corneliu Constantinescu
Bodenacherstr. 53, CH 8121 Benglen, Switzerland, e-mail: constant@math.ethz.ch

Jianliian Cui
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China, e-mail: j cui@math.tsinghua.edu.cn
Patrizia Daniele
Department of Mathematics and Computer Science, University of Catania, Catania, Italy, e-mail: daniele@dmi.unict.it

S.S. Dragomir
Research Group in Mathematical Inequalities and Applications, School of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne City, VIC, Australia 8001, e-mail: sever.dragomir@vu.edu.au

Gabriele Eichfelder
Department Mathematik, Universität Erlangen-Nürnberg, Martensstr. 3, D-91058 Erlangen, Germany, e-mail: Gabriele.Eichfelder@am.uni-erlangen.de

M. Eshaghi-Gordji
Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran, e-mail: madjid.eshaghi@gmail.com

L. Gâvruta
Universitatea Politehnica din Timișoara, Departamentul de Matematică, Piața Victoriei no.2, 300006 Timișoara, Romania, e-mail: gavruta_laura@yahoo.com

P. Gâvruta
Universitatea Politehnica din Timișoara, Departamentul de Matematică, Piața Victoriei no. 2, 300006 Timișoara, Romania, e-mail: pgavruta@yahoo.com

F. Giannessi
Department of Mathematics, Faculty of Natural Sciences, University of Pisa, Via F. Buonarroti, 56127, Pisa, Italy,

Sofia Giuffré
D.I.M.E.T., Mediterranean University, Reggio Calabria, Italy, e-mail: sofia.giuffre@unirc.it

D. Goeleven
IREMIA, University of La Reunion, 97400 Saint-Denis, France, e-mail: goeleven@univ-reunion.fr

M. Seetharama Gowda
Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA, e-mail: gowda@math.umbc.edu

T.X.D. Ha
Researcher, Hanoi Institute of Mathematics, Hanoi, Vietnam

S. Hawkins
Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada, e-mail: mcojocar@uoguelph.ca

Syed Shakaib Irfan
College of Engineering, Qassim University, P.O. Box 6677, Buraidah 51452, Al-Qassim, Kingdom of Saudi Arabia, e-mail: shakaib11@rediffmail.com
G. Isac†
Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. Box 17000, STN Forces Kingston, Ontario K7K 7B4, Canada

Johannes Jahn
Department Mathematik, Universität Erlangen-Nürnberg, Martensstr. 3, D-91058 Erlangen, Germany, e-mail: jahn@am.uni-erlangen.de

Kil-Woung Jun
Department of Mathematics, Chungnam National University, 220 Yuseong-Gu, Daejeon, 305-764, Korea, e-mail: kwjun@cnu.ac.kr

Soon-Mo Jung
Mathematics Section, College of Science and Technology, Hongik University, 339-701 Jochiwon, Republic of Korea, e-mail: smjung@hongik.ac.kr

S. Kaboli-Gharetapeh
Department of Mathematics, Payame Noor University of Mashhad, Mashhad, Iran, e-mail: simin.kaboli@gmail.com

A.A. Khan
School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, USA, e-mail: aaksma@rit.edu

Hark-Mahn Kim
Department of Mathematics, Chungnam National University, 220 Yuseong-Gu, Daejeon, 305-764, Korea, e-mail: hmkim@cnu.ac.kr

Dag Lukkassen
Narvik University College and Norut Narvik, P.O.B. 385 N-8505 Narvik, Norway

Antonino Maugeri
Department of Mathematics and Computer Science, University of Catania, Catania, Italy, e-mail: maugeri@dmi.unict.it

Annette Meidell
Narvik University College, P.O.B. 385 N-8505 Narvik, Norway

Melania M. Moldovan
Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA, e-mail: melania1@umbc.edu

M.S. Moslehian
Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran, e-mail: moslehian@ferdowsi.um.ac.ir and moslehian@ams.org

Dumitru Motreanu
University of Perpignan, Department de Mathématiques, 66860 Perpignan, France, e-mail: motreanu@univ-perp.fr
S.Z. Németh
The University of Birmingham, School of Mathematics, The Watson Building, Edgbaston, B15 2TT Birmingham, UK, e-mail: nemeths@for.mat.bham.ac.uk

Donal O'Regan
Department of Mathematics, National University of Ireland, Galway, Ireland

Choonkil Park
Department of Mathematics, Hanyang University, Seoul 133-791, South Korea, e-mail: baak@hanyang.ac.kr

Dan Pascali
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA, e-mail: dp39@nyu.edu

Lars-Erik Persson
Department of Mathematics, Lulea University, S-97187 Lulea, Sweden

Stephane Pia
Department of Mathematics and Computer Science, University of Catania, Catania, Italy, e-mail: pia@dmi.unict.it

Radu Precup
Department of Applied Mathematics, Babes-Bolyai University, 400084 Cluj, Romania, e-mail: r.precup@math.ubbcluj.ro

Viorel Radu
West University of Timișoara, Faculty of Mathematics and Computer Science, Department of Mathematics, Vasile Pârvan 4, 300223, Timișoara, Romania, e-mail: radu@math.uvt.ro

Themistocles M. Rassias
Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece, e-mail: trassias@math.ntua.gr

Ioan A. Rus
Babes-Bolyai University, Department of Applied Mathematics, Kogălniceanu Nr. 1, 400084 Cluj-Napoca, Romania, e-mail: iarus@math.ubbcluj.ro

Ghadir Sadeghi
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran; and Banach Mathematical Research Group (BMRG), Mashhad, Iran, e-mail: ghadir54@yahoo.com and gh.sadeghi@math.um.ac.ir

Abul Hasan Siddiqi
B.M.A.S. Engineering College, Agra 282007, U.P., India, e-mail: siddiqi.abulhasan@gmail.com

C. Tammer
Institute of Mathematics, Martin-Luther University of Halle-Wittenberg, 06099 Halle, Germany
H. Thille
Department of Economics, University of Guelph, Guelph, ON, Canada,
e-mail: hthille@uoguelph.ca

E. Thommes
Department of Physics, University of Guelph, Guelph, ON, Canada,
e-mail: ethommes@uoguelph.ca

Mihai Turinici
“A. Myller” Mathematical Seminar; “A. I. Cuza” University, 11, Copou Boulevard,
700506 Iaşi, Romania, e-mail: mturi@uaic.ro

Henry Wolkowicz
Department of Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada, e-mail: hwolkowi@uwaterloo.ca

S. Zolfaghari
Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan,
Iran, e-mail: zolfaghgrys@yahoo.com