Imaging in CNS Drug Discovery and Development
Preface

The last decade has seen a loss of confidence in the big pharma model for the development of new drugs. Despite unprecedented development costs, only about 10% of molecules entering Phase I were registered as drugs between 1991 and 2000 (Kola and Landis 2004). More concerning for the industry is that a significant proportion of the molecules failed in late phase development, after major investments already had been made. Two problems dominated these late stage failures: lack of efficacy and unanticipated safety risks.

Several reasons for this high attrition are suggested by the observation that critical issues related to efficacy often were not answered early in development. For example: Does the molecule reach its target? Is there evidence for the desired pharmacological effect in vivo? What is the dose-response relationship? In cases in which some of this information was established in preclinical models, the models did not necessarily reflect the critical biology in humans or for the human disease. Drug development needs to incorporate approaches for more direct in vivo pharmacology in humans.

In addition, because so much of the safety evaluation either relies on short term outcomes in humans or preclinical studies using high compound concentrations, more slowly developing pathologies or pathologies idiosyncratic to humans or particular populations can escape detection until large numbers of patients are treated for long periods in Phase III studies. Better ways of bridging between preclinical toxicology and clinical toxicology studies are needed. More sensitive measures for toxicology are desired in clinical studies. Safety assessment also can benefit from in vivo physiological measures in humans.

The primary limitations of conventional clinical development for many current major disease targets (e.g., in CNS, metabolic and cardiovascular indications) relate to requirements for long periods of evaluation and the modest sensitivity of usual, clinically based measures of outcome. While these clinical measures of outcome may have ecological validity in terms of ultimate clinical impact, they typically are only indirectly related to pharmacology and rarely address toxicology in particular. A compelling new approach to addressing this challenge is the aggressive application early in development of experimental medicine approaches designed to test specific pharmacological or toxicological hypotheses. Using biochemical, structural, or physiological measures that report on changes reflecting distribution or
direct consequences of drug action, the kinds of critical questions posed above can begin to be answered translationally in a coordinated strategy extending from preclinical to clinical studies. The translational element involves initial qualification of biomarkers in preclinical experiments, where they can be related directly to a broad range of well-accepted outcomes. When combined with patient populations in which the disease mechanisms are well characterized, the interaction between pharmacology and disease mechanisms can be elucidated more powerfully in shorter studies with more precisely defined and sensitive measures of response.

Such short term biomarker measures of drug distribution of pharmacological response may or may not be predictive of ultimate clinical response for any indication. However, they constitute direct tests of the fundamental hypotheses that are driving development of a molecule. Strict criteria for progression can be defined, making proof of pharmacology a critical part of a decision to progress development from early stages.

While some may argue that there are many examples of useful drugs with activity in disease that was not well predicted by the initial pharmacological hypothesis, set against this is the sad prior (for a rigorous, Bayesian view of drug development): most molecules will fail to make suitable drugs. The prior probability of not developing a potentially important therapeutic molecule because of failure at an early, direct test of pharmacology is therefore low.

Imaging in CNS Drug Discovery and Development provides a primer to the emerging potential of imaging as a general biomarker particularly for CNS drug development. The Editors have gathered together an internationally respected group of experts. Both academic and industry leaders are included. Together, they have produced a unique volume introducing the major tools, approaches, and challenges.

Important themes of integration run through the book. The selection of chapter topics emphasizes the need to integrate clinical and preclinical investigations of pharmacology. Preclinical investigations provide a fundamentally important way of relating imaging measures directly to conventional pharmacological and neurobiological response indices. It is not just through biomarker qualification that preclinical imaging provides an important tool to drive more effective clinical investigations. Preclinical studies also provide an opportunity to more completely define response relations and to push the range of such studies over a broader range, providing hypotheses that can later be explored in human toxicologically focused investigations. Preclinical imaging also allows the similar measures used for candidate selection to be applied to the initial proof of pharmacology in humans. At the same time, applications of imaging to preclinical investigations address the three R’s of reduction, refinement, and, by extension to the clinical studies, an emphasis on replacement of use of animals by human experimental medicine in drug development.

A second theme addressed very directly in the concluding section of the book is the importance of integration of imaging and other biomarker information to provide multivariate measures of response. The neurobiology of disease and related neuropharmacology are complex. There is increasing evidence that multivariate
approaches provide new ways of enhancing precision of outcome measures and sensitivity. Computational power now should not be limiting. It is imperative that we use the full range of data available more effectively.

Applications of imaging to drug development have been growing rapidly in number over the last few years. In this exciting environment, it would not be possible to create a volume that remains fully current with the state-of-the-art. The Editors therefore have included chapters from experts providing paradigmatic examples that establish a “blueprint” for a way forward. Key therapeutic areas that illustrate the major problems have been identified. The use of functional imaging-based measures to objectify subjective experience is described in the chapter on pain, illustrating how sensitivity to the range of responses to a complex illness can be captured powerfully by imaging. The description of initial studies with post-traumatic stress disorder highlights the role of imaging in diseases of mind. Examples also are chosen from disorders in which there is a more complete understanding of disease neurophysiology, such as addiction and anxiety, illustrating how knowledge of the underlying cognitive systems can be coupled with imaging to drive stronger pharmacological hypotheses. Finally, the discussion of plasticity highlights one of the most important characteristics of noninvasive imaging approaches: the potential to follow the dynamics of change over time.

Recent commentators have looked to major changes in industry structure as a solution to the problems of innovation and high attrition in pharma. Imaging in CNS Drug Discovery and Development is part of a fundamentally optimistic alternative future scenario: the idea that drug development can be made better by becoming smarter. Implicitly, the Editors make a strong case that, using a science-based strategy, the paradigm for drug development can be improved. All of us must hope that this promising path forward will have a substantial impact on getting better medicines to the right patients more quickly. This volume contributes substantially to accelerating this grand experiment.

P.M. Matthews
Vice-President, Imaging, GlaxoSmithKline
Head, GSK Clinical Imaging Centre, Hammersmith Hospital, London
Professor of Clinical Neurosciences, Imperial College, London

Reference

Contents

Part I Background

The Challenges and Opportunities... 3
David Borsook, Edward Bullmore, Lino Becerra, and Richard Hargreaves

Imaging of CNS Systems: Importance for Drug Development............. 11
Hong I. Wan, Mitchel A. Kling, Mark Day, Juan Chavez, Giora Feuerstein, Orest Hurko, and Menelas N. Pangalos

Part II Imaging Approaches

Anatomical Imaging: Volumetric Analysis.. 31
Natalie L. Voets

Diffusion Tensor Imaging and Drug Development 47
Dominique L. Jenning and A. Gregory Sorensen

Functional Magnetic Resonance Imaging in Drug Development 67
Jaymin Upadhyay, David Borsook, and Lino Becerra

Magnetic Resonance Imaging of Pharmacological Systems.............. 91
Hanbing Lu, Thomas J. Ross, and Elliot A. Stein

Molecular Imaging: Basic Approaches.. 105
Elisenda Rodriguez and John W. Chen

Chemical Imaging: Magnetic Resonance Spectroscopy:
The Basics ... 121
Andrew P. Prescot and Perry F. Renshaw
Part III Imaging CNS Drug Action

Animal Imaging... 137
Donald Williams, Alexandre Coimbra, and Fuqiang Zhao

Incorporating Functional MRI into Clinical Pharmacology Trials 153
Ajay Verma, Ruben Declercq, Alexandre Coimbra, and Eric Achten

Imaging Placebo Responses in the Brain.. 163
Luana Colloca and Fabrizio Benedetti

Structural Imaging of Drug Actions in Neurodegenerative Diseases...... 177
Susanne G. Mueller

Molecular Imaging of the CNS: Drug Actions.................................... 191
Thomas Mueggler and Markus Rudin

Part IV Imaging CNS Disease States

Translational MRI in CNS Drug Discovery 215
Markus von Kienlin and Céline Risterucci

In Vivo Mouse Imaging and Spectroscopy in Drug Discovery 229
Nicolau Beckmann, Catherine Cannet, Martin Rausch, Rainer Kneuer, and Hans-Ulrich Gremlich

Neuroimaging in Understanding Chronic Pain
Mechanisms and the Development of New Therapies 251
Karolina Wartolowska and Irene Tracey

Neuroimaging Human Drug Addiction... 263
P.A. Woicik, N. Alia-Klein, N.D. Volkow, and R.Z. Goldstein

Anxiety: Uncover Roles of Stress Related Genes by Imaging Genetics ... 291
David Goldman and Zhifeng Zhou

Imaging CNS Disease States: Alzheimer’s Disease............................ 303
Bradford C. Dickerson

Brain Development and CNS Plasticity.. 319
Damien A. Fair and Bradley L. Schlaggar

Imaging in CNS Disease States: PTSD.. 339
J. Douglas Bremner
Part V Integrative Processes

Integrative Processes: Neuroscience Clinical Imaging Biomarkers 363
Igor D. Grachev and Richard J. Hargreaves

Reasons to Believe: The Potential of Imaging in CNS Drug Development ... 381
Richard Hargreaves, Edward Bullmore, Lino R. Becerra, and David Borsook

Index.. 387
Contributors

Eric Achten
Department of Neuroradiology, Ghent University Hospital, Ghent, Belgium

Lino Beccera
Brain Imaging Center, McLean Hospital, Belmont, MA, USA

Nicolau Beckmann
Novartis Institutes for BioMedical Research, Global Imaging Group, Basel, Switzerland

Fabrizio Benedetti
Department of Neuroscience, University of Turin Medical School, National Institute of Neuroscience, Turin, Italy

David Borsook
Brain Imaging Center, McLean Hospital, Belmont, MA, USA

J. Douglas Bremner
Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia, USA

Edward Bullmore
Department of Psychiatry, Addenbrooke’s Hospital, Cambridge, UK

Catherine Cannet
Novartis Institutes for BioMedical Research, Global Imaging Group, Basel, Switzerland

Juan Chavez
Discovery Translational Medicine Department, Wyeth Research, Collegeville, PA, USA

John W. Chen
Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA

Alexandre Coimbra
Imaging Department, Merck Research Laboratories, West Point, PA, USA
Luana Colloca
Department of Neuroscience, University of Turin Medical School,
National Institute of Neuroscience, Turin, Italy

Mark Day
Discovery Translational Medicine Department, Wyeth Research,
Collegeville, PA, USA

Ruben Declercq
Clinical Pharmacology Europe, Merck Sharp & Dohme (Europe) Inc.,
Brussels, Belgium

Bradford C. Dickerson
Department of Neurology, Massachusetts General Hospital,
Boston, MA, USA

Damien Fair
Behavioral Neuroscience Department, Oregon Health and Science University,
Portland, OR, USA

Giora Feuerstein
Discovery Translational Medicine Department, Wyeth Research,
Collegeville, PA, USA

David Goldman
NIAAA/LNG, Rockville, MD, USA

R.Z. Goldstein
Center for Translational Neuroimaging, Brookhaven National Laboratory,
Upton, NY, USA

Igor D. Grachev
Merck Imaging, West Point, PA, USA

Hans-Ulrich Gremlich
Novartis Institutes for BioMedical Research, Global Imaging Group,
Basel, Switzerland

Richard Hargreaves
Merck Basic Neuroscience, West Point, PA, USA

Orest Hurko
Discovery Translational Medicine Department, Wyeth Research,
Collegeville, PA, USA

Dominique L. Jenning
Department of Radiology, Massachusetts General Hospital,
Boston, MA, USA

Markus von Kienlin
Neuroscience, F. Hoffmann-La Roche AG, Basel, Switzerland
Alia-Klein
Center for Translational Neuroimaging, Brookhaven National Laboratory,
Upton, NY, USA

Mitchel A. Kling
Clinical Medicine Department, Wyeth Research, Collegeville, PA, USA

Rainer Kneuer
Novartis Institutes for BioMedical Research, Global Imaging Group,
Basel, Switzerland

Hanbing Lu
National Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD, USA

Thomas Mueggler
Institute for Biomedical Engineering, University and ETH Zürich,
Zürich, Switzerland

Susanne G. Mueller
Center for Imaging of Neurodegenerative Diseases, VAMC San Francisco 114 M,
San Francisco, CA, USA

Menelas N. Pangalos
Neuroscience Discovery, Wyeth Research, Collegeville, PA, USA

Andrew P Prescot
The University of Utah School of Medicine, The Brain Institute,
Salt Lake City, UT, USA

Martin Rausch
Novartis Institutes for BioMedical Research, Global Imaging Group,
Basel, Switzerland

Perry F Renshaw
The University of Utah School of Medicine, The Brain Institute,
Salt Lake City, UT, USA

Céline Risterucci
Neuroscience, F. Hoffmann-La Roche AG, Basel, Switzerland

Elisenda Rodriguez
Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA

Thomas J. Ross
National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA

Markus Rudin
Institute for Biomedical Engineering, University and ETH Zürich,
Zürich, Switzerland
Bradley L. Schlaggar
Washington University School of Medicine, Department of Neurology,
St. Louis, MO, USA

A. Gregory Sorensen
Division of Health Sciences and Technology, Harvard Medical School,
Boston, MA, USA

Elliot A. Stein
National Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD, USA

Irene Tracey
FMRIB Centre, Department of Clinical Neurology, University of Oxford,
Oxford, UK

Jaymin Upadhyay
Imaging Consortium for Drug Development, Mclean Hospital,
Harvard Medical School, Belmont, MA, USA

Ajay Verma
Experimental Medicine, Merck Research Laboratories,
Merck and Co., Inc., North Wales, PA, USA

Natalie L. Voets
GSK Clinical Imaging, Imperial College London, Hammersmith Hospital,
London, UK

N.D. Volkow
National Institute on Drug Abuse, Bethesda, MD, USA

Hong I. Wan
Clinical Medicine Department, Wyeth Research, Collegeville, PA, USA

Karolina Wartolowska
FMRIB Centre, Department of Clinical Neurology, University of Oxford,
Oxford, UK

Donald Williams
Imaging Department, Merck Research Laboratories, West Point, PA, USA

P.A. Woicik
Center for Translational Neuroimaging, Brookhaven National Laboratory,
Upton, NY, USA

Fuqiang Zhao
Imaging Department, Merck Research Laboratories, West Point, PA, USA

Zhifeng Zhou
Laboratory of Neurogenetics, NIAAA/NIH, Rockville, MD, USA
About the Editors

David Borsook, MD, PhD, trained in medicine and neurobiology at the University of the Witwatersrand, Medical School, Johannesburg, South Africa. He graduated in 1980. Following his internship, he trained in Neurology at Boston City Hospital and then was the first Pain Fellow at the Massachusetts General Hospital, Department of Neurology. He subsequently was the Director of the Pain Center at the Hospital from 1994 to 2004. He has completed doctoral studies in Neurobiology and later started the Pain Imaging Program in the Department of Radiology at Massachusetts General Hospital. In 2002, he led an effort to cofound a Biotech – Descartes Therapeutics Inc., with his colleague Lino Becerra PhD to use imaging in drug development, where he was Senior Vice President and Chief Scientific Officer. He currently directs an integrated imaging program – Pain & Analgesia Imaging Neuroscience (P.A.I.N.) Group at three Harvard Medical School Affiliated Hospitals, Massachusetts General Hospital, McLean Hospital and Children’s Hospital Boston. A component of this is a consortium of pharmaceutical and academic centers involved in the evaluation of fMRI in drug development known as ICD (Imaging Consortium for Drug Development). He has participated in a number of NIH meetings on future directions of pain research. His research is supported by grants from the National Institutes of Health, Foundations and Pharmaceutical Companies interested in the use of imaging in defining pain phenotype. He has published over 85 papers that include various aspects of pain, imaging in pain, and analgesia.

Dr. Lino Becerra, PhD, is Lecturer in Psychiatry at Harvard Medical School, he has co-appointments in the Departments of Psychiatry at McLean Hospital and Massachusetts General Hospital (MGH), and Radiology at MGH. He is the Director of the Imaging and Analysis Group at the Brain Imaging Center, McLean Hospital; and Co-Director of the Imaging Consortium for Drug Development (ICD) and the Pain Imaging and Analgesics Neuroscience Group (P.A.I.N. Group) at the same institution. Dr. Becerra was a cofounder of Descartes Therapeutics Inc., a biotech company dedicated to the development of drugs for chronic pain patients. His research interests are focused on the optimization of functional imaging for its utilization in drug development, in particular for chronic pain. Translational aspects of drug development through the study of preclinical and clinical early phase trials with the aid of
neuroimaging have been his main interest. Dr. Becerra is the author of over 50 publications, reviews, and book chapters appearing in journals such as *Neuron, Neuroscience, Journal of Neuroscience, Journal of Neurophysiology, NeuroImage*, and *European Journal of Pain*. He is a reviewer for these Journals, as well as for *Biological Psychiatry and Archives of General Psychiatry*.

Edward Bullmore, MD, PhD, trained in medicine at Oxford and St Bartholomew’s Hospital, London, graduated in 1985. Following a period of further medical training as a Lecturer in Medicine at the University of Hong Kong (MRCP 1989), he started specialist training in psychiatry at St George’s Hospital, London, and then at the Bethlem Royal & Maudsley Hospital as a registrar from 1990 (MRCPsych 1992). From 1993, he was supported by the Wellcome Trust as a Research Training Fellow (then as an Advanced Research Training Fellow 1996–1999) at the Institute of Psychiatry in London, where he completed doctoral studies on statistical analysis of magnetic resonance imaging data (PhD 1997). In 1999, he moved to the University of Cambridge as a Professor of Psychiatry and since 2005 he has been Clinical Director of the Behavioural & Clinical Neurosciences Institute at Cambridge. Also since 2005, he has combined his academic roles with a 50% secondment to GlaxoSmithKline as Vice-President for Experimental Medicine and head of GSK’s Clinical Unit in Cambridge (CUC). His research in Cambridge has been supported by grants from the National Institutes of Health (Human Brain Project), the Wellcome Trust and the MRC; he has published more than 200 papers on various aspects of neuroimaging, neuroscience, and psychiatry. In 2008, he was elected a Fellow of the Academy of Medical Sciences.

Richard Hargreaves, PhD, trained at Chelsea College, London University in the UK where he obtained a First class honors degree in pharmacology. After completing his doctorate through the Physiology Department at King’s College London University UK, he joined Merck’s Neuroscience Research Center in Harlow UK in 1988 where he occupied positions of increasing seniority. Richard led the discovery biology teams that contributed to the development of MAXALT® (rizatriptan) for the treatment of migraine and EMEND® (aprepitant) and IVEMEND® (fosaprepitant), novel agents that advance the protective pharmacotherapy of acute and delayed chemotherapy-induced nausea and vomiting and postoperative nausea and vomiting. In 1999, Richard moved to the USA to establish and lead a worldwide imaging research strategy for Merck Research Laboratories. Since that time, he built a Global Multimodality Imaging Group that supports decision making in drug discovery and development across Merck’s key therapeutic areas. A key component of this imaging strategy has been the use of precompetitive initiatives to combine expertise and share the costs of developing and characterizing new imaging tools and technologies that can be used to improve the evaluation of the safety and efficacy of novel drug candidates. Richard was awarded the 2007 Gary Neill Award for “Innovation in Drug Development” by the American Society of Clinical Pharmacology and Therapeutics (ASCPT) for his work on imaging in drug discovery and development. In February 2008, he was named Worldwide Head of Basic Research, Neuroscience for Merck Research Laboratories.