B.N. Murdin S.K. Clowes
(Eds.)

Narrow Gap
Semiconductors 2007

Proceedings of the
13th International Conference,
8–12 July, 2007, Guildford, UK
Preface

The Thirteenth International Conference on Narrow Gap Semiconductors (NGS13) was held in Surrey, UK, on July 8-12, 2007. We brought together researchers from 15 countries to discuss recent advances and discoveries in the science and technology of narrow gap semiconductors, following the traditions of the previous twelve conferences in this series – Dallas, USA (1970), Nice, France (1973), Warsaw, Poland (1977), Linz, Austria (1981), Gaithersburg, USA (1989), Southampton, UK (1992), Santa Fe, USA (1995), Shanghai, China (1997), Berlin, Germany (1999), Kanazawa, Japan (2001), Buffalo, USA (2003) and Toulouse, France (2005).

It was over 40 years ago, before we were born, that the first III-V semiconductors started to be crystallised in high quality, and the best materials available were the so called narrow gap materials. These materials were of fundamental interest at the time, and have continued to be so due to the strong effects of non-parabolicity and spin-orbit coupling, providing exciting tests of solid-state quantum mechanics. For applications they were overtaken in importance for microelectronics and optoelectronics by other wider gap materials, but they nevertheless became of great importance with the advent of mercury cadmium telluride mid-infrared detector applications. Recently narrow gap materials have had a resurgence in interest in a number of application areas. They can exhibit interesting spin-physics and have great potential for spintronic devices, thanks to strong coupling to the conduction band of the strongly spin-orbit split valence band. The growth of nanocrystals made from narrow gap materials has offered the possibility of cheaper near-infrared devices, in competition with wide gap structures. Graphene has emerged as a zero-gap semiconductor with special properties and exciting physics and applications. Finally, now, the InSb transistor has exhibited record performance characteristics and forms one of the possible strands of the information technology roadmap. Although these applications have given new impetus, there remains a strong fundamental physics interest in narrow gap semiconductors, and effects such as zitterbewegung are especially strong in these materials. All of the above topics were represented at the Thirteenth Conference, and the subject is as vibrant as ever.

It gives us great pleasure that some of the Fathers of this field were present at the Conference, and we are especially grateful to Professors Carl Pidgeon and Guenther Bauer, whose enormous enthusiasm made our job as Chairmen a great pleasure.

The social events provided an excellent setting for informal discussions. The Welcome Reception took place at the Advanced Technology Institute on the
campus of the University of Surrey. The Conference Excursion took the participants to the 16th century Hampton Court Palace; home to Cardinal Wolsey and King Henry VIII. The Conference Dinner was held at the award winning Denbies Wine Estate, the largest vineyard in England.

We would like to thank all members of the program and advisory committees for their individual contributions for the organization of the conference and for setting up the scientific program, and we want to thank all participants for attending the conference and for their valuable scientific presentations. Our special thanks must go to Steven Clowes, whose responsibilities included setting up and maintaining the program for manuscript and abstract submissions and paper distributions to referees. We must also thank Julie Maplethorpe for her unwavering support as conference secretary, who assisted in the organisation of all aspect of the event and ensuring we were all well looked after during the conference week. Without Steven and Julie, putting together this Conference Proceedings in such a short period of time would have been impossible.

Finally, we have the pleasure to announce that the next Conference, NGS14, will be held on 4-8 or 18-22 August 2009, at the Sendai International Center, Sendai, Japan, and will be chaired by Professor Junsaku Nitta and co-chaired by Professor Hiro Munekata.

Ben Murdin
Conference Chair

Wolfgang Heiss
Program Chair
Committees and Organisers

Conference Chair
B.N. Murdin (UK)

Program Committee
- W. Heiss (Austria) – Chair
- F. Bechstedt (Germany)
- P.D. Buckle (UK)
- R. Magri (Italy)
- C. Sirtori (France)
- S.D. Ganichev (Germany)

International Advisory Committee
- G. Bauer (Austria) – Chair
- T. Ando (Japan)
- B.M. Arora (India)
- M. Helm (Germany)
- J. Leotin (France)
- B.D. McCombe (U.S.A.)
- N. Miura (Japan)
- H. Munekata (Japan)
- M. von Ortenburg (Germany)
- C.R. Pidgeon (UK)
- S.C. Shen (China)
- W. Zawadski (Poland)

Local Organising Committee
- B.N. Murdin – Chair
- S.J. Sweeney – Vice Chair
- J. Maplethorpe – Secretary
- S.K. Clowes – Editor
- K.L. Litvinenko
- L. Nikzad

Conference Banquet – Denbies Wine Estate
Committees and Organisers

Organising Institutions
Advanced Technology Institute, University of Surrey (http://www.surrey.ac.uk/ati)
Department of Physics, University of Surrey (http://www.surrey.ac.uk/physics)
Institute of Semiconductor and Solid State Physics, University of Linz (http://www.hlphys.jku.at)

Conference Website - http://www.ati.surrey.ac.uk/NGS13
Presentations - http://www.ati.surrey.ac.uk/NGS13/presentations
The Conference in Figures

Attendance by country

<table>
<thead>
<tr>
<th>Country</th>
<th>Algeria</th>
<th>Austria</th>
<th>Belgium</th>
<th>Brazil</th>
<th>France</th>
<th>Germany</th>
<th>Isreal</th>
<th>Japan</th>
<th>Lithuania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Norway</th>
<th>Poland</th>
<th>Russia</th>
<th>Switzerland</th>
<th>U.K.</th>
<th>U.S.A.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>7</td>
<td>76</td>
</tr>
</tbody>
</table>

Junior / senior distribution

[Pie charts showing percentages of junior and senior attendees]
Contents

Part I – Spin-Related Phenomena

Gate Dependence of Spin-Splitting in an InSb/InAlSb Quantum Well
W.R. Branford, A. M. Gilbertson, P. D. Buckle, L. Buckle, T. Ashley,
F. Magnus, S.K. Clowes, J.J. Harris, and L. F. Cohen3

Photogalvanic Effects in HgTe Quantum Wells
B. Wittmann, S. N. Danilov, Z. D. Kwon, N. N. Mikhailov,
S. A. Dvoretsky, R. Ravash, W. Prettl, and S. D. Ganichev7

Magnetic and Structural Properties of Ferromagnetic GeMnTe Layers
P. Dziawa, W. Knoff, V. Domukhovski, J. Domagala, R. Jakiela,
E. Lusakowska, V. Osinniy, K. Swiatek, B. Taliashvili, and T. Story.........11

Control and probe of Carrier and Spin Relaxations in InSb Based Structures
G. A. Khodaparast, R. N. Kini, K. Nontapot, M. Frazier, E. C. Wade,
J. J. Heremans, S. J. Chung , N. Goel , M. B. Santos , T. Wojtowicz ,
X. Liu, and J. K. Furdyna ..15

Density and Well-Width Dependence of the Spin Relaxation in n-InSb/AlInSb Quantum Wells
K. L. Litvinenko, B. N. Murdin, S. K. Clowes, L. Nikzad, J. Allam,

Dependence of Layer Thickness on Magnetism and Electrical Conduction in Ferromagnetic (In,Mn)As/GaSb Heterostructures
H. Nose, S. Sugahara, and H. Munekata23

Temperature Dependence of the Electron Lande g-Factor in InSb
C.R. Pidgeon, K.L. Litvinenko, L. Nikzad, J. Allam, L.F. Cohen,
T. Ashley, M. Emeny, and B.N. Murdin27

Anomalous Spin Splitting of Electrons in InSb type-II Quantum Dots in an InAs Matrix
Ya.V. Terent’ev, O.G. Lyublinskaya, A.A. Toropov, B. Ya. Meltser,
A.N. Semenov, and S.V. Ivanov ...31
Measurement of the Dresselhaus and Rashba Spin-Orbit Coupling Via Weak Anti-Localization in InSb Quantum Wells

Part II – Growth, Fabrication, Characterisation and Theory

Picosecond Carrier Dynamics in Narrow-Gap Semiconductors Studied by Terahertz Radiation Pulses
R. Adomavičius, R. Šustavičiūtė, and A. Krotkus41

Band Structure of InSbN and GaSbN
A. Lindsay, A.D. Andreev, E. P. O’Reilly, and T. Ashley 45

Growth and Characterisation of Dilute Antimonide Nitride Materials for Long Wavelength Applications

Electron Interband Breakdown in a Kane Semiconductor With a Degenerate Hole Distribution
A. V. Dmitriev and A. B. Evlyukhin ...53

InMnAs Quantum Dots: a Raman Spectroscopy Analysis
A. D. Rodrigues, J. C. Galzerani, E. Marega Jr., L. N. Coelho, R., Magalhães-Paniago, and G. J. Salamo ...57

Conduction Band States in AlP/GaP Quantum Wells.
M. Goiran, M..P. Semtsiv, S. Dressler, W. T. Masselink, J. Galibert, G. Fedorov, D. Smirnov, V. V. Rylkov, and J. Léotin............................61

Growth of InAsSb Quantum Wells by Liquid Phase Epitaxy
M. Yin, A. Krier, and R. Jones ...65

Diode Lasers for Free Space Optical Communications Based on InAsSb/InAsSbP Grown by LPE
M. Yin, A. Krier, P.J. Carrington, R. Jones, and S. E. Krier69

Epitaxial Growth and Characterization of PbGeEuTe Layers
Monte Carlo Simulation of Electron Transport in PbTe
V. Palankovski, M. Wagner, and W. Heiss ... 77

L-Band-Related Interband Transition in InSb/GaSb Self-Assembled Quantum Dots
S. I. Rybchenko, R. Gupta, I. E. Itskevich, and S. K. Haywood 81

Antimony Distribution in the InSb/InAs QD Heterostructures
A.N. Semenov, O.G. Lyublinskaya, B. Ya. Meltser, V.A. Solov'ev,
L.V. Delendik, and S.V. Ivanov ... 85

Transport Properties of InAs$_{0.1}$Sb$_{0.9}$ Thin Films Sandwiched by Al$_{0.1}$In$_{0.9}$Sb Layers Grown on GaAs(100) Substrates by Molecular Beam Epitaxy
I. Shibasaki, H. Geka, and A. Okamoto ... 89

Modelling of Photon Absorption and Carrier Dynamics in HgCdTe Under mid-IR Laser Irradiation ... 93
A. S. Villanger, T. Brudevoll, and K. Stenersen

Monte Carlo Study of Transport Properties of InN
S. Vitanov and V. Palankovski ... 97

New Type of Combined Resonance in p-PbTe
H. Yokoi, S. Takeyama, N. Miura, and G. Bauer 101

Part III - Carbon Nanotubes and Graphene

Theory of Third-Order Optical Susceptibility of Single-Wall Carbon Nanotubes With Account of Coulomb Interaction
D. Lobaskin and A. Andreev ... 107

Unveiling the Magnetically Induced Field-Effect in Carbon Nanotubes Devices
G. Fedorov, A. Tselev, D. Jiménez, S. Latil, N. G. Kalugin,
P. Barbara, D. Smirnov, and S. Roche .. 111

Transient Zitterbewegung of Electrons in Graphene and Carbon Nanotubes
T. M. Rusin and W. Zawadzki .. 115
Cross-Polarized Exciton Absorption in Semiconducting Carbon Nanotubes
S. Uryu and T. Ando ...119

Part IV – Nanocrystals and Nanowires

Self-Assembled InSb/InAs Quantum Dots for the Mid-Infrared Spectral Range 3-4 µm

InSb/InAs Nanostructures Grown by Molecular Beam Epitaxy Using Sb$_2$ and As$_2$ Fluxes

Part V – Electronic Devices

Performance Evaluation of Conventional Sb-based Multiquantum Well Lasers Operating Above 3µm at Room Temperature
A. Kadri, K. Zitouni, Y. Rouillard, and P. Christol ..135

Electroluminescence From Electrically Pumped GaSb-Based VCSELs
O. Dier, C. Lauer, A. Bachmann, T. Lim, K. Kashani, and M.-C. Amann....139

Wavelength Tunable Resonant Cavity Enhanced Photodetectors Based on Lead-Salts Grown by MBE
F. Felder, M. Arnold, C. Ebner, M. Rahim, and H. Zogg.............................143

Farfield Measurements of Y-Coupled Quantum Cascade Lasers

Impact of Doping Density in Short-Wavelength InP-Based Strain-Compensated Quantum-Cascade Lasers
Magnetic Field Effects in InSb/Al$_x$In$_{1-x}$Sb Quantum-Well Light-Emitting Diodes
B. I. Mirza, G. R. Nash, S. J. Smith, M. K. Haigh, L. Buckle, M. T. Emeny, and T. Ashley ...155

Electroluminescence from InSb-Based Mid-Infrared Quantum Well Lasers

InAs Quantum Hot Electron Transistor
T. Daoud, J. Devenson, A.N. Baranov, and R. Teissier163

Easy-to-Use Scalable Antennas for Coherent Detection of THz Radiation
S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, O. Drachenko, H. Schneider, and M. Helm ...167

Single Photon Detection in the Long Wave Infrared
T. Ueda, Z. An, K. Hirakawa, and S. Komiyama.................................171

High-Performance Fabry-Perot and Distributed-Feedback Interband Cascade Lasers

Mid-Infrared Lead-Salt VECSEL (Vertical External Cavity Surface Emitting Laser) for Spectroscopy
M. Rahim, M. Arnold, F. Felder, I. Zasavitskiy, and H. Zogg..............183

Optically Pumped GaSb-Based VECSELs
N. Schulz, M. Rattunde, B. Rösener, C. Manz, K. Köhler, and J. Wagner...187

Part VI – Magneto-Transport and Magneto-Optics

Cyclotron Resonance Photoconductivity of a Two-Dimensional Electron Gas in HgTe Quantum Wells
Extrinsic Electrons and Carrier Accumulation in Al$_x$In$_{1-x}$Sb/InSb Quantum Wells: Well-Width Dependence
A. Fujimoto, S. Ishida, T. Manago, H. Geka, A. Okamoto, and I. Shibasaki ... 199

Negative and Positive Magnetoresistance in Variable-Range Hopping Regime of Undoped Al$_x$In$_{1-x}$Sb/InSb Quantum Wells
S. Ishida, T. Manago, K. Oto, A. Fujimoto, H. Geka, A. Okamoto, and I. Shibasaki ... 203

Semimetal-Insulator Transition in Two-Dimensional System at the Type II Broken-Gap InAs/GaInAsSb Single Heterointerface
K.D. Moiseev, M.P. Mikhailova, R.V. Parfeniev, J. Galibert, and J. Leotin ... 209

Magnetoexcitons in Strained InSb Quantum Wells