Advances in Cognitive Neurodynamics
Advances in Cognitive Neurodynamics

This conference was supported by the National Natural Science Foundation of China (Grant No. 10710301053)
Preface

Fifty years ago, enthused by successes in creating digital computers and the DNA model of heredity, scientists were confident that solutions to the problems of understanding biological intelligence and creating machine intelligence were within their grasp. Progress at first seemed rapid. Giant ‘brains’ that filled air-conditioned rooms were shrunk into briefcases. The speed of computation doubled every two years.

What these advances revealed is not the solutions but the difficulties of the problems. We are like the geographers who ‘discovered’ America, not as a collection of islands but as continents seen only at shores and demanding exploration. We are astounded less by the magnitude of our discoveries about how brains cogitate than by the enormity of the tasks we have undertaken, to explain and replicate the higher functions of brains.

Five decades of brain research have led to the emergence of a new field, which spans the entire range of brain cognition from quantum fields to social interactions, and which is combined by the conceptions of nonlinear neurodynamics operating simultaneously at and across all levels. A new breed of scientists has emerged, schooled in multiple academic disciplines, comfortable in working with data from different levels, and conversant with the mathematical tools that are essential to cross boundaries.

Cognition in its essence is dynamic and multilayered, and pursuit of new clues inevitably leads from one layer to the next, both reductive and holistic. Something more is needed to track these clues than the collaboration of experts. It is the self-education of scientists in each field to journeyman competence in adjacent fields. Thus, a new scientific branch focused on these topics, cognitive neurodynamics has been emerged and intrigued scientists and engineers working in various fields.

An international journal “Cognitive Neurodynamics” edited by us was published early this year by Springer, which may be the first one totally dedicated to this important new branch and provide a forum for scientists and engineers, including neuroscientists, neuropsychologists, cognitive scientists, physicists, mathematicians, IT engineers, and many other experts to publish their results and exchanges their ideas and views.

Although there were special sessions with the title of “Neurodynamics” in many conferences, however, there were very few international meetings focusing all its themes on cognitive neurodynamics, maybe except for a series of Tamagawa
Dynamic Brain Forums organized by the Japanese “Gang of Five” on nonlinear
dynamics in the past decade. We are very glad now that the 1st International Con-
ference on Cognitive Neurodynamics was held in Shanghai, China Nov. 17–21,
which is sponsored and organized by East China University of Science & Tech-
nology, Shanghai Society for Biophysics, the journal “Cognitive Neurodynamics”,
and cosponsored by The National Natural Science Foundation of China (NSFC),
Shanghai Association for Science & Technology, Beijing University of Aeronau-
tics and Astronautics, Beijing University of Technology, Brain Science Center of
Tamagawa University, Brain Science Research Center of KAIST, CAS-MPG Part-
ner Institute for Computational Biology (PICB), Chinese Society for Neuroscience
(CSN), Chinese Society of Theoretical and Applied Mechanics (CSTAM), IEEE
Singapore Computational Intelligence Chapter, International Neural Network Soci-
ety (INNS), Japanese Neural Network Society (JNNS), Nanjing University Aeronau-
tics and Astronautics, Research Center for Brain Science of Fudan University,
RIKEN Brain Science Institute (BSI), Shanghai Jiaotong University, Shanghai So-
ciety for Nonlinear Science (SSNS), Shanghai University, Tongji University, Xi’an
Jiaotong University, Zhejiang University. We are also very glad that the conference
has warmly welcomed by the scientists and engineers working in this field. We have
10 plenary talks given by the leading scientists in this field and 14 mini-symposia
organized by some of them and other outstanding experts. In addition, we have other
8 special sessions and one poster session. The topics of the contributions almost
cover all the fields of cognitive neurodynamics, from micro-, meso- to macroscopic
cognitive neurodynamics, their applications and some related topics. Within our
knowledge, this conference is the biggest one wholly dedicated to this topic up to
now. It’s also our great pleasure to notice the high quality of the contributions, which
come from about 30 countries and areas all over the world. We hope the readers will
also enjoy and be inspired by the papers in this book.

We hope this is only the first step to create a forum for the scientists and engineers
working in the field to show their latest progress, to exchange their ideas and views,
and discuss the perspective of this fast growing interdisciplinary area. We hope this
book is only the 1st volume of a book series on cognitive neurodynamics.

We would like to express our sincere gratitude to all the sponsors and the con-
tributors, this book could not be published without their supports.

Rubin Wang
Fanji Gu
Enhua Shen
Contents

Part I Microscopic Cognitive Neurodynamics

1. **Dynamic Interaction Networks and Global Ontology-Based Modelling of Brain Dynamics**
 - Nikola Kasabov and Lubica Benuskova
 - Page 3

2. **The Cauchy Problem for Spiking Neuron Models**
 - Romain Brette
 - Page 9

3. **On the Dynamics of Spectro-Temporal Tuning in Auditory Cortex**
 - Didier A. Depireux, Heather D. Dobbins and Barak Shechter
 - Page 13

4. **A European Collaboration on Cerebellar LTD and Pattern Recognition**
 - Erik De Schutter and Volker Steuber
 - Page 19

5. **The Role of Layer 6 Feedback Cells in the Primary Visual Cortex**
 - Wei Wang
 - Page 23

6. **What Language is Spoken Here? Conversations Between Neurons in Primate Visual Cortex**
 - Vivien A. Casagrande, Xin Chen and Walter J. Jermakowicz
 - Page 27

7. **On the Emergence of Orientation Biases in V1**
 - Mehdil and Nouri Shirazi
 - Page 31

8. **Stress Affects Synaptic Plasticity and Basal Synaptic Transmission in the Rat Hippocampus *In Vivo***
 - Amer Kamal, Ivan Urban and Willem Hendrik Gispen
 - Page 37
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Physiological Evidence for Cantor Coding Output in Hippocampal CA1</td>
<td>Yasuhiro Fukushima, Makoto Yoneyama, Minoru Tsukada, Ichiro Tsuda, Yutaka Yamaguti and Shigeru Kuroda</td>
</tr>
<tr>
<td>10</td>
<td>Theta Phase Coding and Suppression of Irrelevant Plastic Change Through STDP in the Entorhino-Hippocampal System amid Background Noise</td>
<td>Jun Igarashi and Hatsuo Hayashi</td>
</tr>
<tr>
<td>11</td>
<td>Effect of Low-Frequency Stimulation on Spontaneous Firing in Cultured Neuronal Networks</td>
<td>J. van Pelt, I. Vajda, P.S. Wolters, G. Ramakers and A. van Ooyen</td>
</tr>
<tr>
<td>12</td>
<td>Modeling Neurons of the Inferior Colliculus</td>
<td>Harry Erwin, Mark Elshaw, Adrian Rees, David Perez-Gonzalez and Stefan Wermter</td>
</tr>
<tr>
<td>13</td>
<td>Synchronization Effects in Networks of Striatal Fast Spiking Interneurons – Role of Gap Junctions</td>
<td>Johannes Hjorth, Lennart Hedlund, Kim T Blackwell and Jeanette Hellgren Kotaleski</td>
</tr>
<tr>
<td>14</td>
<td>Multilayer In-Place Learning Networks with Adaptive Lateral Connections: Models and Simulations</td>
<td>Weiya Shi, Juyang Weng, Mingmin Chi and Xiangyang Xue</td>
</tr>
<tr>
<td>15</td>
<td>Stimulus-Induced Pairwise Interaction Can Be Revealed by Information Geometric Approach</td>
<td>Hiroyuki Nakahara, Masanori Shimono, Go Uchida and Manabu Tanifuji</td>
</tr>
<tr>
<td>16</td>
<td>A Dynamical Model of Fast Intrinsic Optical Signal of Neural Burstings</td>
<td>Jianzhong Su, Hanli Liu and Yuanbo Peng</td>
</tr>
<tr>
<td>17</td>
<td>The Mechanism of Bifurcation-Dependent Coherence Resonance of Morris-Lecar Neuron Model</td>
<td>Guangjun Zhang, Jianxue Xu, Jue Wang, Zhifeng Yue, Chunbo Liu, Hong Yao and Xiangbo Wang</td>
</tr>
<tr>
<td>18</td>
<td>Noise-Induced Coherence Resonance in Morris-Lecar Neuron System</td>
<td>Bao-Hua Wang, Qi-Shao Lu and Xiao-Juan Sun</td>
</tr>
</tbody>
</table>
19 Chaotic Burst Synchronization in a Small-World Neuronal Network
Yanhong Zheng, Qishao Lu, Qingyun Wang and Fang Han

20 A Stochastic Resonance Memory Mechanism of Hippocampus
Yan Chuankui and Liu Shenquan

21 Theta Phase Precession Enhance Single Trial Learning in an
STDP Network
Enhua Shen, Rubin Wang and Zhikang Zhang

22 A Numerical Mechanism for Square-Wave or Elliptic Bursting of
Bursts in a Map-Based Neuron Network
Hongjun Cao and Miguel A.F. Sanjuán

23 Sub-Threshold Oscillation and Transient Response in Neural
Coding
Jianxue Xu

24 Setting Up New Memories: The Ideal Job for The Mammalian
Dentate Gyrus
Gergely Papp and Alessandro Treves

25 Neural Network Model Generating Symbol Sequence for Songs of
Bengalese Finch
Junichirou Kotani, Yasukuni Mori and Ikuo Matsuba

26 A New Method for Characterizing the Variability of the Spike
Trains
Ying Du, Qi-Shao Lu and Shi-Min Wang

Part II Mesoscopic Cognitive Neurodynamics; Transitions Between Levels

27 Proposed Renormalization Group Analysis of Nonlinear Brain
Dynamics at Criticality
Walter J. Freeman and Tian Yu Cao

28 Regulating Cortical Neurodynamics at Different Scales
Hans Liljenström

29 A Thermodynamic Model of the Action-Perception
Cycle in Brain Dynamics
Walter J. Freeman
30 Dynamic Field Theory as the Interface Between Neuronal Dynamics and Embodied Cognition .. 169
Gregor Schöner

31 The Task of Cognitive Neuroscience .. 175
Christoph von der Malsburg

32 Functional Roles of Feedback Signals from Higher-Order Areas to Lower-Order Areas in the Visual Cortical Pathways 181
Tiande Shou

33 Dynamics of Population Decoding with Strong Inhibition 187
Thomas Trappenberg

34 Global Oscillations of CA3 Neural Fields 193
Francesco Ventriglia

35 Behaviour Signatures of Continuous Attractors 197
Si Wu

36 Statistical Outliers in Neuron Population and Myelinated Fiber Development in Human Neocortex ... 203
David L. Cooper, James E. Gentle and James L. Olds

37 Studies on Synchronization Using KIV Model 207
Mark H. Myers, Robert Kozma and Walter J. Freeman

38 Synchronous Firing and Its Control in Neuronal Population with Time Delay ... 213
Xianfa Jiao and Rubin Wang

39 Sequence Memory with Dynamic Synapses and Chaotic Neurons ... 219
Min Xia, Zhijie Wang and Jian’an Fang

40 Interacting Turing and Hopf Instabilities Drive Pattern Formation in a Noise-Driven Model Cortex .. 225
Moira L. Steyn-Ross, D.A. Steyn-Ross, M.T. Wilson and J.W. Sleigh

41 Context-Dependent Processing of Spatiotemporal Patterns Based on Interaction Between Neurodynamical Systems 231
Takashi Hasuo, Ken Yamane and Masahiko Morita

42 The Synchronization and Associative Memory of Izhikevich Neural Network ... 237
Wei Zhang, Qingli Qiao, Xuyuan Zheng and Xin Tian
43 Connectivity Dependent Effects in Cognitive Neurodynamics of Mental Disorders 243
 Hans Liljenström and Yuqiao Gu

44 Corticopetal Acetylcholine: A Role in Attentional State Transitions and the Genesis of Quasi-Attractors During Perception 249
 Hiroshi Fujii, Kazuyuki Aihara and Ichiro Tsuda

45 Cortical Anatomy and the Spatiotemporal Learning Rule 255
 J.J. Wright and P.D. Bourke

46 Theta Phase Precession for Spatial Representation in the Entorhinal-dentate Gyrus-ca3 Network 263
 Colin Molter and Yoko Yamaguchi

47 Optical Imaging of Visual Feature Representation in the Awake, Fixating Monkey .. 269
 Anna Roe

48 Mechanisms of Spatial Integration in Primary Visual Cortex of the Primate ... 273
 Alexander Thiele and Mark Roberts

49 Coding of Peripheral Olfactory Information in the Olfactory Bulb of Small Animals 279
 Fuqiang Xu, James Shafer, Nian Liu, Douglas L. Rothman, Fahmeed Hyder and Gordon M. Shepherd

50 Neural Ensembles and Local Field Potentials in the Hippocampal-Prefrontal Cortex System During Spatial Learning and Strategy Shifts in Rats .. 285
 Francesco P. Battaglia, Karim Benchenane, Mehdi Khamassi, Adrien Peyrache and Sidney I. Wiener

51 Temporal and Spatial Characters of Retinal Ganglion Cells’ Response to Natural Stimuli 289
 Ying-Ying Zhang, Xin Jin, Hai-Qing Gong and Pei-Ji Liang

52 Synchronization of Chaotic Neuronal Networks with Small-world Topology .. 293
 Fang Han, Qi-Shao Lu and Yan-Hong Zheng

53 Effects of Time Delay on Synchronization and Temporal Order in a Square Lattice Noisy Neuronal Network 299
 Qing-Yun Wang, Zhi-Sheng Duan and Qi-Shao Lu
54 The Attractor Type of Complex Networks 305
Tan Ning, Huang Jing, Zhang Wei and Yang Fenghong

55 Asymptotical Stability of Delayed BAM Neural Networks with Generalized Activation Functions by Comparison Approaches 309
Yuguo Chen and Wudai Liao

56 Chaotic Synchronization of Hindmarsh-Rose Neurons Coupled by Cubic Nonlinear Feedback 315
Xiaoling Fang and Hongjie Yu

Part III Macroscopic Cognitive Neurodynamics

57 When Is It Worth Working: Calculating the Motivational Value of Working ... 323
Barry J. Richmond, Giancarlo LaCamera, Alex Lerchner and Takafumi Minamimoto

58 The Physiological and Biochemical Bases of Functional Brain Imaging .. 327
Louis Sokoloff

59 Through Attention to Consciousness 335
J.G. Taylor

60 What Do Infants Infer? – Modelling Simple Cognition 351
J.G. Taylor and M. Hartley

61 The Time Dimension for Scene Analysis 361
DeLiang Wang

62 Implications for Psychiatry of a Thermodynamic Model of Brain Operating Far from Equilibrium 365
Walter J. Freeman

63 Optical Imaging of Plastic Changes Induced by Fear Conditioning in The Auditory Cortex of Guinea Pig 369
Yoshinori Ide, Jan Lauwereyns, Guy Sandner and Minoru Tsukada

64 Learning in Sparse Attractor Networks with Inhibition 375
Si Wu and Thomas Trappenberg
65 Dynamic Analysis of Motor Imagery EEG Using Kurtosis Based Independent Component Analysis ... 381
Xiaojing Guo, Lu Wang, Xiaopei Wu and Daoxin Zhang

66 Quantifying the Sequential Structure of Psychotic Behavior 387
P.E. Rapp

67 Machine Learning Framework for Inferring Cognitive State from Magnetoencephalographic (MEG) Signals 393
Andrey Zhdanov, Talma Hendler, Leslie Ungerleider and Nathan Intrator

68 Relevant Stimuli Encoding Surface Structural Textures by Touching Plain Woven Fabric ... 399
Jiyong Hu, Xin Ding, Rubin Wang and Wei Lin

69 Robust Auditory-Based Speech Feature Extraction Using Independent Subspace Method ... 405
Qiang Wu, Liqing Zhang and Bin Xia

70 Intra- and Interpersonal Coordination of Goal-Oriented Movements in a Working Scenario ... 411
Cordula Vesper, Sonja Stork, Mathey Wiesbeck and Anna Schubö

71 Network Synchronization/Desynchronization Defects in the Pathogenesis of Neuropsychiatric Disorders 417
R.S. Hernandez and P.E. Rapp

72 Exploring Causal Relationships in the Phase Functions of Coupled Van der Pol Oscillators ... 423
C.J. Cellucci and P.E. Rapp

73 EEG Theta Regulates Eye Saccade Generation During Human Object-place Memory Encoding ... 429
Naoyuki Sato and Yoko Yamaguchi

74 Hippocampal and Parahippocampal Neuronal Responses to Spatial and Non-Spatial Factors in Rats and Monkeys 435
Hisao Nishijo, Etsuro Hori, Tsuneyuki Kobayashi and Taketoshi Ono

75 Oscillatory Event Synchrony During Steady State Visual Evoked Potentials ... 439
François B. Vialatte, Justin Dauwels, Tomasz M. Rutkowski and Andrzej Cichocki
76 Information Entropy-Based Penalty for PARAFAC Analysis of Resting EEG ... 443
Eduardo Martínez-Montes, Rafael Sarmiento-Pérez, José M. Sánchez-Bornot and Pedro A. Valdés-Sosa

77 PARAFAC Analysis of Neural Correlates of Face Detection 447
Jhoanna Pérez-Hidalgo-Gato, Valia Rodríguez-Rodríguez and Eduardo Martínez-Montes

78 Human Vision Can Predict Semi-Random but the First-Order Linear Process .. 451
Manabu Shikauchi and Tomohiro Shibata

79 Memory Formation of Object Representation: Natural Scenes 457
Eiichi Hoshino, Fumihiko Taya and Ken Mogi

80 Dynamical Model of Action Reinforcement by Gated Working Memory .. 463
Adam Ponzi

81 Quantum Representation Theory for Nonlinear Dynamical Automata ... 469
Peter beim Graben

82 Superior Colliculus and Basal Ganglia Control the Saccadic Response in Motion Discrimination Tasks 475
Jiaxiang Zhang and Rafal Bogacz

83 A Synergetic Model for Operant Behaviors Under the Control of Fixed Interval Reinforcement Schedules 481
Shih-Che Lin and Jay-Shake Li

84 Adaptable Intermittency and Autonomous Transitions in Epilepsy and Cognition ... 485
Elan Liss Ohayon, Hon C. Kwan, W. McIntyre Burnham, Piotr Suffczynski, Fernando H. Lopes da Silva and Stiliyan Kalitzin

85 A Computational Approach to the Control of Voluntary Saccadic Eye Movements ... 491
Jeremy Fix

86 Spatial Considerations of Feedback Control for the Suppression of Epileptic Seizures .. 495
Beth A. Lopour and Andrew J. Szeri
87 EEG Scaling Difference Between Eyes-Closed and Eyes-Open Conditions by Detrended Fluctuation Analysis 501
Tingting Gao, Dan Wu and Dezhong Yao

88 Closure Positive Shifts Evoked by Different Prosodic Boundaries in Chinese Sentences 505
Weijun Li, Lin Wang, Xiaqing Li and Yufang Yang

89 Structure–Function Relationship in Complex Brain Networks by Multilevel Modeling 511
Changsong Zhou, Lucia Zemanová, Claus C. Hilgetag and J. Kurths

90 Model of Attention Allocation for Car Driver by Driving Plan and Prediction of Environment Change 515
Takashi Omori, Yuki Togashi and Koichiro Yamauchi

91 Top-Down Object Biased Attention Using Growing Fuzzy Topology ART ... 521
Young-Min Jang, Byungku Hwang, Sang-Woo Ban and Minho Lee

Jun Saiki, Takahiko Koike and Matthew deBrecht

93 Extraction of Single-Trail N400 Event-Related Potentials Based on Dynamic Independent Component Analysis 531
Wen-Juan Li and Xiao-Pei Wu

94 Characterizing Individual Interest by a Computational Model of Reading .. 539
J. Ignacio Serrano, M. Dolores del Castillo and Ángel Iglesias

95 Overview of Diffusion Tensor Imaging in Multiple Sclerosis and Neuromyelitis Optica 545
Chunshui Yu

96 1H MRS Characterization of Cerebral Metabolic Changes in Transgenic Mouse Models of Alzheimer’s Disease 553
Xiaoxia Du and Hao Lei

97 WLC Analysis of Lamprey Neural System 559
Liu Shenquan, Chen Shuchun and Wang Rubin
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Hydrocephalus: A Realistic Porous-Media Model with Geometry Based on Neuroimaging</td>
<td>Guillermo Narsilio, Xiaobin Shen, Hongxin Wang, David Smith and Gary Egan</td>
</tr>
<tr>
<td>99</td>
<td>Pattern Classification of Visual Evoked Potentials Based on Parallel Factor Analysis</td>
<td>Jie Li, Liqing Zhang and Qibin Zhao</td>
</tr>
<tr>
<td>100</td>
<td>How Can We Justify the Use of Lower Animal Models to Understand the Pathophysiology of Schizophrenia?</td>
<td>Anne-Laure Boutillier, Carlos Eduardo Macedo, Marie-Josée Angst and Guy Sandner</td>
</tr>
<tr>
<td>101</td>
<td>Monkey Prefrontal Neuronal Activity Modifications after Training in a Cognitive Task</td>
<td>Xue-Lian Qi, Travis Meyer and Christos Constantinidis</td>
</tr>
<tr>
<td>102</td>
<td>Neural Substrates During Finding Target Objects and Observing Natural Phenomena: An fMRI Study</td>
<td>Jun-Ki Lee, Jin-Su Jeong, Il-Ho Yang and Yong-Ju Kwon</td>
</tr>
<tr>
<td>103</td>
<td>Changes in Brain Activation Induced by Training of Hypothesis Generation Skills: An fMRI Study</td>
<td>Yong-Ju Kwon, Jun-Ki Lee, Jin-Su Jeong, Dongkook Park and Il-Ho Yang</td>
</tr>
<tr>
<td>104</td>
<td>Early Access and Integration of Meaning Indicated by Pitch Accent: A Mismatch Negativity Study</td>
<td>Xiaoqing Li and Yufang Yang</td>
</tr>
<tr>
<td>105</td>
<td>Electric Stimulation of Optic Nerve Fiber: A Simulation Study</td>
<td>Qingli Qiao, Wei Zhang, C.L. Vencent and Qiushi Ren</td>
</tr>
<tr>
<td>106</td>
<td>EEG Dynamics During Nitrous Oxide Inhalation in Healthy Male Participants</td>
<td>Brett L. Foster, Mathew P. Daflis, Nicholas C. Sinclair and David T.J. Liley</td>
</tr>
</tbody>
</table>
108 Brain Activation During Scientific Hypothesis Generation in
Biologists and Non-biologists 625
Il-Sun Lee, Jun-Ki Lee, Jin-Su Jeong and Yong-Ju Kwon

109 Wavelet Analysis of ERP Recordings for Dual Tasks in Man 631
Jie Wu, Zhuo Yang and Tao Zhang

110 Neocortical and Neocerebellar Synchronization of Fast
Oscillations: Role in the Dynamic Organization of Rapid
Temporal Processing ... 637
John P. Welsh, Xiao-Hui Zeng, Paulo Rodrigues and Eric Washburn

Part IV Applications

111 A Road-Map Towards Cognitive Machines 643
J.G. Taylor

112 Comprehensive EEG Signal Analysis for Brain–Computer
Interface .. 651
Shangkai Gao, Xiaorong Gao and Bo Hong

113 Unsupervised Extraction and Supervised Selection of Features
Based on Information Gain 655
Soo-Young Lee, Chandra Shahard Dhir, Paresh Chandra Barman and
Sangkyun Lee

114 Stability and Instability in Autonomous Systems 661
Hans Liljenström

115 The Neuroinformatics Portal of the International
Neuroinformatics Coordinating Facility 667
Jan G. Bjaalie

116 Neuroinformatics in the Netherlands 673
Jaap van Pelt and Arjen van Ooyen

117 Neuroinformatics Japan Node and Platforms 679
Shiro Usui

118 Chinese Neuroinformatics Research: Recent Progress and Future
Activities .. 685
Guang Li, Ling Yin, YiYuan Tang and Xiaowei Tang
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Neuroinformatics in India – Current Status and Future Directions</td>
<td>Nandini Chatterjee Singh</td>
</tr>
<tr>
<td>120</td>
<td>Emotional States Estimation from Multichannel EEG Maps</td>
<td>Tomasz M. Rutkowski, Andrzej Cichocki, Anca L. Ralescu and Danilo P. Mandic</td>
</tr>
<tr>
<td>121</td>
<td>ICA and Complexity Measures of EEG Analysis in Brain Death Determination</td>
<td>Jianting Cao and Zhe Chen</td>
</tr>
<tr>
<td>122</td>
<td>Feature Reduction in Biosignal Processing</td>
<td>Martin Golz and David Sommer</td>
</tr>
<tr>
<td>123</td>
<td>An Efficient Encoding Scheme for Dynamic Visual Input Based on the Statistics of Natural Optic Flow</td>
<td>Dirk Calow and Markus Lappe</td>
</tr>
<tr>
<td>124</td>
<td>Grid Task Scheduling Algorithm R3Q for Evolving Artificial Neural Networks</td>
<td>Yoshiyuki Matsumura, Masashi Oiso, Kazuhiro Ohkura, Noriyuki Fujimoto, Kenichi Hagihara, Jeremy Wyatt and Xin Yao</td>
</tr>
<tr>
<td>125</td>
<td>Pattern Discrimination of Mechanomyogram Using a Delta-Sigma Modulated Probabilistic Neural Network</td>
<td>Keisuke Shima and Toshio Tsuji</td>
</tr>
<tr>
<td>126</td>
<td>HMM-Based Top-Down Attention for Noise-Robust Speech Recognition</td>
<td>Chang-Hoon Lee and Soo-Young Lee</td>
</tr>
<tr>
<td>127</td>
<td>Roving Robot Autonomously Controled by Chaotic Memory Dynamics in Quasi-Layered Recurrent Neural Networks for Sensing and Driving</td>
<td>Tai Tanaka, Yasumasa Miyamoto, Yongtao Li, Daigo Munetaka, So Shimizu, Shuhei Kurata, Shogo Morita and Shigetoshi Nara</td>
</tr>
<tr>
<td>128</td>
<td>A New Approach to Detect Stable Phase Structure in High-Density EEG Signals</td>
<td>Yusely Ruiz, Guang Li, Eduardo González and Walter Freeman</td>
</tr>
<tr>
<td>129</td>
<td>A Tea Classification Method Based on an Olfactory System Model</td>
<td>Eduardo Gonzalez, Guang Li, Yusely Ruiz and Jin Zhang</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>130</td>
<td>Evolution Architecture Models for Integrated Grid Information Services</td>
<td>753</td>
</tr>
<tr>
<td></td>
<td>Do-Hyeun Kim, Kyung-Woo Kang and Gyung-Leen Park</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Maximizing Parallelism for Single Loops</td>
<td>759</td>
</tr>
<tr>
<td></td>
<td>Sam Jin Jeong</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>The Realtime Workflow for RFID Based Medical Test</td>
<td>765</td>
</tr>
<tr>
<td></td>
<td>Sang Hwan Kung, YunHee Kang and Kyung Woo Kang</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Visuo-Spatial Attention Frame Recognition for Brain-Computer Interfaces</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>Ferran Galán, Julie Palix, Ricardo Chavarriaga, Pierre W. Ferrez,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eileen Lew, Claude-Alain Hauert and José del R. Millán</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>To Err is Human: Learning from Error Potentials in Brain-Computer Interfaces</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td>Ricardo Chavarriaga, Pierre W. Ferrez and José del R. Millán</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Multi-Command Real-Time Brain Machine Interface Using SSVEP: Feasibility Study for Occipital and Forehead Sensor Locations</td>
<td>783</td>
</tr>
<tr>
<td></td>
<td>Pablo Martinez, Hovagim Bakardjian and Andrzej Cichocki</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Towards Learning Retina Implants: How to Induce Visual Percepts with Electrical Stimulation Patterns</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td>Rolf Eckmiller, Oliver Baruth and Stefan Borbe</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>The Effects of Speed Steps on Brain Cognitive Processing: An ERP Study</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>Lin-Jie Wang, Jin-He Wei, Dan Zhang, Wei-Jun Dong,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jian-Ping Guo and Mao-Qi Hu</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Design and Implementation of the Adaptive Teachable Agent</td>
<td>799</td>
</tr>
<tr>
<td></td>
<td>SungHyun Yun, DongSeong Choi and SungIl Kim</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>The Convertible Undeniable Multi-Signature Scheme</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>SungHyun Yun, Hyung-Woo Lee and MyungHo Lee</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>A Cognitive-Neuro Computational Lexical Acquisition Model</td>
<td>809</td>
</tr>
<tr>
<td></td>
<td>Heui Seok Lim, Kichun Nam, SeongBom Pyun, ChangWhan Lee and Kunhee Han</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Brain Activation Connected with Visual Word Processing in Korean Language</td>
<td>813</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Hyojeong Sohn, Sung Bum Pyun, Jaebum Jung, Hui-jin Song, Yongmin Chang, Hui Seok Lim and Kichun Nam</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>142</th>
<th>A GJK Based Real-Time Collision Detection Algorithm for Moving Objects</th>
<th>817</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sangyoung Oh and Seonmin Hwang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>143</th>
<th>Neural Information Encoding Based on a Bifurcation Machinery .</th>
<th>821</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wei Ren, Huaguang Gu, Minghao Yang, Zhiqiang Liu, Li Li, Yulin Xu and Hongjv Liu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>144</th>
<th>Identify Stochastic Bursting from Chaotic Bursting Generated in an Experimental Neural Pacemaker</th>
<th>827</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Huaguang Gu and Qishao Lu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>145</th>
<th>Ocular Artifacts Removal from EEG Using EMD</th>
<th>831</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>David Looney, Ling Li, Tomasz M. Rutkowski, Danilo P. Mandic and Andrzej Cichocki</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>146</th>
<th>Quasi-Brain-Death EEG Data Analysis by Empirical Mode Decomposition</th>
<th>837</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yuki Saito, Toshihisa Tanaka, Jianting Cao and Danilo P. Mandic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>147</th>
<th>Synchronization Between Two Coupled Networks of Discrete-Time Systems</th>
<th>843</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Congxiang Xu, Weigang Sun and Changpin Li</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>148</th>
<th>Walk-Aided System with Wearable Lower Extremity Exoskeleton for Brain-Machine Engineering</th>
<th>849</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heng Cao, Yuhai Yin, Zhengyang Ling, Wenjin Gu, Zhiyong and Yang Di Cao</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>149</th>
<th>A Study on the Filter Effect for Calculating the Mass Center of the Traveling Alpha Waves</th>
<th>857</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hongchuan Xiong, Gang Yin, Yin Tian, Yongxiu Lai and Dezhong Yao</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150</th>
<th>Differentiate Negative and Positive Schizophrenia Using Support Vector Machine</th>
<th>863</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ming Ke, Hui Shen, Baojuan Li, Zongtan Zhou and Dewen Hu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>151</th>
<th>Detecting Nonlinearity in Wrist Pulse Using Delay Vector Variance Method</th>
<th>867</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jianjun Yan, Yiqin Wang, Chunming Xia, Fufeng Li and Rui Guo</td>
<td></td>
</tr>
</tbody>
</table>
152 Orthogonal Filter-Based Networks for Learning 873
Wieslaw Sienko and Wieslaw Citko

153 Modeling and Simulation of Foreign Body Reactions to Neural Implants ... 879
Jianzhong Su, Humberto Perez Gonzales and Liping Tang

154 Transiently Chaotic Neural Network with Variable Thresholds for the Frequency Assignment Problem in Satellite Communications . . 885
Wen Liu, Haixiang Shi and Lipo Wang

155 Sparse Coding of Visual Context 891
Jun Miao, Laiyun Qing, Lijuan Duan, Xilin Chen and Wen Gao

156 Mark Design and Recognition in Blind-Guiding System 897
Jihong Liu, Guannan Shao, Xinhe Xu and Soo-Young Lee

157 An Animal Model of Alzheimer’s Disease Highlighting Targets for Computational Modeling 903
Diana S. Woodruff-Pak, Alexis Agelan, Luis Del Valle and Mohan Achary

158 An Improved Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling 909
Aiqing Yu and Xingsheng Gu

159 Support Vector Machine on Functional MRI 915
Ling Zeng, Qingwei Liu, Huiling Xiao and Huafu Chen

Part V Methods and Technics

160 Face Detection Using Multi-Feature 921
Huaiyi Zhu, Liqing Zhang, He Sun and Rong Xiao

161 A Text Classification Method Based on Cascade 927
Hui Li, Qi Zhang, Huchuan Lu and Deli Yang

162 A PCNN Based Approach to Image Segmentation Using Size-Adaptive Texture Features 933
Lijuan Duan, Jun Miao, Can Liu, Yunfeng Lu, Yuanhua Qiao and Baixian Zou
163 Entropy-Partition of Complex Systems and Emergence of Human Brain’s Consciousness ... 939
Guangcheng Xi

164 Multi-Qubit State Teleportation via Multiparty-Controlled Entanglement ... 947
Ying Guo and Guihua Zeng

165 New Multiobjective PSO Algorithm for Nonlinear Constrained Programming Problems ... 955
Chun-An Liu

166 Binary Kernel in Morphological Associative Memory 963
Wei-Chen Cheng and Cheng-Yuan Liou

167 Intrusion Detection Classifier Based on Dynamic SOM and Swarm Intelligence Clustering ... 969
Yong Feng, Jiang Zhong, Zhong-yang Xiong, Chun-xiao Ye and Kai-gui Wu

168 New Evolutionary Algorithm to Solve Dynamic Constrained Optimization ... 975
Chun-An Liu and Yuping Wang

169 Effects of 3D Co-Occurrence Features on Terrain Classification . 981
Dong-Min Woo, Dong-Chul Park, Quoc-Dat Nguyen,
Young-Soo Song and Quang-Dung Nguyen Tran

170 New Heuristic of Self Organizing Map Using Updating Distribution 987
Sung-Hae Jun

171 Regression ICA Algorithm for Image Denoising 993
Shangming Yang, Zhang Yi and Guisong Liu

172 Thumbnail Generation Based on Global Saliency 999
Xiaodi Hou and Liqing Zhang

173 Exponential Stability of Delayed Hopfield Neural Networks by Using Comparison Method ... 1005
Wudai Liao and Yuguo Chen

174 Adaptive Fuzzy Clustering Neural Network 1011
Fang Bao, Yonghui Pan and Wenbo Xu
175 Compound Attack on Synchronization Based Neural Cryptography ... 1019
Ping Li and Zhang Yi

176 Two-Dimension Mass-Moment Control Based on the Fuzzy Neural Networks Variable Structure Control 1025
Zhiqin Qian, Heng Cao, Ding Du, Zhengyang Ling, Di Cao and Yongbo Long

177 Constructive Approximation Method of Polynomial by Neural Networks ... 1033
Jianjun Wang, Zongben Xu and Jia Jing

178 Fault Pattern Recognition Based on Improved Wavelet Neural Network ... 1039
Deng-Chao Feng, Zhao-Xuan Yang and Zeng-Min Wang

179 Estimation of the Flooded Volume in Ad Hoc Networks Using Evolving Networking Theory .. 1047
Demin Li, Jie Zhou and Jiacun Wang

180 A Plausible Modeling for Cellular Responding DNA Damage Under Radiotherapy .. 1053
Jinpeng Qi, Shihuang Shao, Xiaojing Gu and Guangzhu Yu

181 An Improvement of Sequential Minimum Optimization Algorithm ... 1059
Jian Zhang, Jun-zhong Zou, Xing-yu Wang and Lan-lan Chen

Index .. 1065
ICCN 2007 Organization

Sponsored and Organized by

East China University of Science and Technology, China
Shanghai Society for Biophysics (SSB)
Editorial Board of “Cognitive Neurodynamics” published by Springer

Co-sponsored by

The National Natural Science Foundation of China (NSFC)
Shanghai Association for Science & Technology
Beijing University of Aeronautics and Astronautics, China
Beijing University of Technology, China
Brain Science Center, Tamagawa University, Japan
Brain Science Research Center, KAIST, Korea
CAS-MPG Partner Institute for Computational Biology (PICB)
Chinese Society for Neuroscience (CSN)
Chinese Society of Theoretical and Applied Mechanics (CSTAM)
IEEE Singapore Computational Intelligence Chapter, Singapore
International Neural Network Society (INNS)
Japanese Neural Network Society (JNNS), Japan
Nanjing University Aeronautics and Astronautics, China
Research Center for Brain Science, Fudan University, China
RIKEN Brain Science Institute (BSI), Japan
Shanghai Society for Nonlinear Science (SSNS)
Shanghai University, China
Tongji University, China
Xi’an Jiaotong University, China
Zhejiang University, China
Honorary Chairs

Amari, Shun-ichi, RIKEN Brain Science Institute (BSI), Japan
Freeman, Walter J., University of California, Berkeley, USA
Grossberg, Stephen, Boston University, USA
Haken, Hermann, University of Stuttgart, Germany
Richmond, Barry J., NIMH/NIH/DHHS, USA
Sokoloff, Louis, National Institutes of Health (NIH), USA

General Chair

Wang, Rubin, East China University of Science and Technology, China

General Co-Chairs

Hu, Haiyan, Nanjing University Aeronautics and Astronautics, China
Lu, Qishao, Beijing University Aeronautics and Astronautics, China
Sandner, Guy, University Louis Pasteur, France
Taylor, John, King’s College, UK
International Advisory Committee

Chairs

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aihara, Kazuyuki</td>
<td>Tokyo University</td>
<td>Japan</td>
</tr>
<tr>
<td>Duch, Wlodzislaw</td>
<td>Nicolaus Copernicus University</td>
<td>Poland</td>
</tr>
<tr>
<td>Guo, Aike</td>
<td>Chinese Academy of Sciences</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Kötter, Rolf</td>
<td>Radboud University Nijmegen</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Schöner, Gregor</td>
<td>Ruhr-Universität Bochum</td>
<td>Germany</td>
</tr>
<tr>
<td>Wang, Deliang</td>
<td>The Ohio State University</td>
<td>U.S.A</td>
</tr>
<tr>
<td>Usui, Shiro</td>
<td>RIKEN Brain Science Institute (BSI)</td>
<td>Japan</td>
</tr>
</tbody>
</table>

Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borisyuk, Roman</td>
<td>Institute of Mathematical Problems in Biology of the Russian Academy of Sciences and the University of Plymouth</td>
<td>UK</td>
</tr>
<tr>
<td>Dress, Andreas</td>
<td>CAS-MPG Partner Institute for Computational Biology (PICB), China</td>
<td>Germany</td>
</tr>
<tr>
<td>Érdi, Peter</td>
<td>Kalamazoo College, KFKI Research Institute for Particle and Nuclear of the Hungarian, Academy of Sciences</td>
<td>Hungary</td>
</tr>
<tr>
<td>Hayashi, Hatsuo</td>
<td>Kyushu Institute of Technology</td>
<td>Japan</td>
</tr>
<tr>
<td>Hertz, John</td>
<td>NORDITA</td>
<td>Denmark</td>
</tr>
<tr>
<td>Hojjat Adeli</td>
<td>The Ohio State University</td>
<td>USA</td>
</tr>
<tr>
<td>Jose C. Principe</td>
<td>University of Florida</td>
<td>USA</td>
</tr>
<tr>
<td>Kopell, Nancy J.</td>
<td>Boston University</td>
<td>USA</td>
</tr>
<tr>
<td>Kamel, Mohamed</td>
<td>University of Waterloo</td>
<td>Canada</td>
</tr>
<tr>
<td>Kaski, Samuel</td>
<td>Helsinki University of Technology</td>
<td>Finland</td>
</tr>
<tr>
<td>König, Peter</td>
<td>University Osnabrück</td>
<td>Germany</td>
</tr>
<tr>
<td>Li, Chaoyi</td>
<td>Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Maass, Wolfgang</td>
<td>Technische Universität Graz</td>
<td>Austria</td>
</tr>
<tr>
<td>Olds, James L.</td>
<td>George Mason University</td>
<td>USA</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Country</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>OKADA, Masato</td>
<td>University of Tokyo</td>
<td>Japan</td>
</tr>
<tr>
<td>Rabinovich, Mikhail I.</td>
<td>UCSD</td>
<td>USA</td>
</tr>
<tr>
<td>Shou, Tiande</td>
<td>Fudan University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Siegel, Ralph Mitchell</td>
<td>Rutgers University</td>
<td>USA</td>
</tr>
<tr>
<td>Sporns, Olaf</td>
<td>Indiana University</td>
<td>USA</td>
</tr>
<tr>
<td>Tang, Xiaowei</td>
<td>Zhejiang University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Teich, Malvin Carl</td>
<td>Boston University</td>
<td>USA</td>
</tr>
<tr>
<td>Trappenberg, Thomas</td>
<td>Dalhousie University</td>
<td>Canada</td>
</tr>
<tr>
<td>Tsuda, Ichiro</td>
<td>Hokkaido University</td>
<td>Japan</td>
</tr>
<tr>
<td>Tsukada, Minoru</td>
<td>Tamagawa University</td>
<td>Japan</td>
</tr>
<tr>
<td>van Leeuwen, Cees</td>
<td>RIKEN Brain Science Institute (BSI)</td>
<td>Japan</td>
</tr>
<tr>
<td>Ventriglia, Francesco</td>
<td>Institute of Cybernetics of CNR</td>
<td>Italy</td>
</tr>
<tr>
<td>Wang, Xingyu</td>
<td>East China University of Science and Technology</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Wermter, Stefan</td>
<td>University of Sunderland</td>
<td>UK</td>
</tr>
<tr>
<td>Yamaguchi, Yoko</td>
<td>RIKEN Brain Science Institute (BSI)</td>
<td>Japan</td>
</tr>
<tr>
<td>Yang, Fusheng</td>
<td>Tsinghua University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Zhu, Weiqiu</td>
<td>Zhejiang University</td>
<td>P. R. China</td>
</tr>
</tbody>
</table>
Program Committee

Chairs

Gu, Fanji Shanghai Society for Biophysics P. R. China
Fudan University
Lee, Soo-Young BSRC, KAIST Korea
Liljenström, Hans Swedish University of Agricultural Sciences Sweden
Nara, Shigetoshi Okayama University Japan
Rapp, Paul E Drexel University College of Medicine USA
Wang, Lipo Nanyang Technological University Singapore

Members

Aertsen, Ad Albert-Ludwigs Universitat Freiburg Germany
Andras, Peter University of Newcastle UK
Andrew Laung City University of Hong Kong Hong Kong
Brette, Romain Ecole Normale Supérieure, Paris France
Cao, Jianting Sitama Institute of Technology Japan
Cao, Jinde Southeast University P. R. China
Chen, Liqun Shanghai University P. R. China
Del Moral Hernandez, Emilio University of Sao Paulo Brazil
Denham, Mike University of Plymouth UK
Depireux, Didier University of Maryland USA
Ding, Mingzhou University of Florida USA
Egan, Gary University of Melbourne Australia
Erwin, Harry University of Sunderland UK
Feldman, Jerry ICSI, University of California at Berkeley USA
Fellous, Jean-Marc Duke University USA
Franceschini, Nicolas CNRS/Univ. de la Méditerranée France
Fujii, Hiroshi Kyoto Sangyo University Japan
Gao, Shangkai Tsinghua University P. R. China
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giese, Martin</td>
<td>University Clinic Tübingen</td>
<td>Germany</td>
</tr>
<tr>
<td>Goldfarb, Lev</td>
<td>University of New Brunswick</td>
<td>Canada</td>
</tr>
<tr>
<td>Graham, Lyle J.</td>
<td>Laboratory of Neurophysics and Physiology, CNRS</td>
<td>France</td>
</tr>
<tr>
<td>Gu, Xingsheng</td>
<td>East China University of Science and Technology</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Han, Seung Kee</td>
<td>Chungbuk National University</td>
<td>Korea</td>
</tr>
<tr>
<td>Han, Shihui</td>
<td>Peking University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Hellgren Kotaleski, Jeanette</td>
<td>Royal Institute of Technology</td>
<td>Sweden</td>
</tr>
<tr>
<td>Hillyard, Steven A.</td>
<td>University of California San Diego</td>
<td>USA</td>
</tr>
<tr>
<td>Hofmann, Ulrich G.</td>
<td>University of Lübeck</td>
<td>Germany</td>
</tr>
<tr>
<td>Jiang, Tianzi</td>
<td>Institute of Automation, Chinese Academy of Sciences</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Kashimori, Yoshiki</td>
<td>University of Electro-Communications</td>
<td>Japan</td>
</tr>
<tr>
<td>Kay, Leslie M.</td>
<td>University of Chicago</td>
<td>USA</td>
</tr>
<tr>
<td>Kendall, Graham</td>
<td>University of Nottingham</td>
<td>UK</td>
</tr>
<tr>
<td>Kozma, Robert</td>
<td>The University of Memphis</td>
<td>USA</td>
</tr>
<tr>
<td>Lappe, Markus</td>
<td>Westfälische Wilhelms University</td>
<td>Germany</td>
</tr>
<tr>
<td>Lee, Vincent C S</td>
<td>Monash University</td>
<td>Australia</td>
</tr>
<tr>
<td>Li, Guang</td>
<td>Zhejiang University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Li, Lei</td>
<td>Hosei University</td>
<td>Japan</td>
</tr>
<tr>
<td>Liang, Hualou</td>
<td>University of Texas</td>
<td>USA</td>
</tr>
<tr>
<td>Liang, Peiji</td>
<td>Shanghai Jiaotong University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Matsuoka, Kiyotoshi</td>
<td>Kyushu Institute of Technology</td>
<td>Japan</td>
</tr>
<tr>
<td>Neskovic, Pedja</td>
<td>Brown University</td>
<td>USA</td>
</tr>
<tr>
<td>Ogmen, Haluk</td>
<td>University of Houston</td>
<td>USA</td>
</tr>
<tr>
<td>Redman, Steve</td>
<td>Australian National University</td>
<td>Australia</td>
</tr>
<tr>
<td>Safronov, Boris V.</td>
<td>IBMC</td>
<td>Portugal</td>
</tr>
<tr>
<td>Sato, Shunsuke</td>
<td>Aino University</td>
<td>Japan</td>
</tr>
<tr>
<td>Shao, Zhiqing</td>
<td>East China University of Science and Technology</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Shi, Hongbo</td>
<td>East China University of Science and Technology</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Szeto Kwok Yip</td>
<td>Hong Kong University of Science and Technology</td>
<td>Hong Kong</td>
</tr>
<tr>
<td>T. Chow</td>
<td>City University of Hong Kong</td>
<td>Hong Kong</td>
</tr>
<tr>
<td>van Ooyen, Arjen</td>
<td>Vrije Universiteit</td>
<td>Netherlands</td>
</tr>
<tr>
<td>van Pelt, Jaap</td>
<td>Netherlands Institute for Neurosciences</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Wang, Bin</td>
<td>Fudan University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Wright, James</td>
<td>Auckland University</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Xu, Jian</td>
<td>Tongji University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Xu, Jianxue</td>
<td>Xi’an Jiaotong University</td>
<td>P. R. China</td>
</tr>
<tr>
<td>Yang, Yufang</td>
<td>Institute of Psychology, Chinese Academy of Sciences</td>
<td>P. R. China</td>
</tr>
</tbody>
</table>
Young, Eric D. Johns Hopkins University USA
Zhang, Wei Beijing University of Technology P. R. China
Zhang, Liqing Shanghai Jiaotong University P. R. China
Zhang, Yi University of Electronic Science and Technology of China P. R. China
Mini-Symposium Organizers

MS – 1. Models of Mental Disorders
Hans Liljenström, Swedish University of Agricultural Sciences, Sweden
James Wright, Auckland University, New Zealand

MS – 2. Cognitive Machines
John Taylor, King’s College, UK

MS – 3. Visual cortex: Information processing and dynamics
Tiande Shou, Fudan University, P.R China
Anna W Roe, Vanderbilt University, USA

Guang Li, Zhejiang University, P.R China
Robert Kozma, The University of Memphis, USA

MS – 5. Advanced Signal Processing Techniques for Brain Data Analysis
Jianting Cao, Sitama Institute of Technology, Japan
Danilo Mandic, Department of Electrical and Electronic Engineering, Imperial College, UK
MS – 6. Neuroinformatics
Shiro Usui, Brain Science Institute (BSI) Japan

MS – 7. Dynamics in learning and memory
Yoko Yamaguchi, Brain Science Institute (BSI) Japan
Minoru Tsukada, Tamagawa University Japan

MS – 8. Cognitive Computational Modeling of Human Language Processing
Heui-Seok Lim, Hanshin University Korea

MS – 9. Translational Cognitive Neuroimaging
Gary Egan, University of Melbourne Australia

MS – 10. Brain Networks: From Anatomy to Dynamics
Tianzi Jiang, Institute of Automation, Chinese Academy of Sciences P.R. China

MS – 12. Dynamics of Firing Patterns and Synchronization in Neuronal Systems
Qishao Lu, Beijing University of Aeronautics and Astronautics P.R. China
MS – 13. Central nervous system synchronization
Paul E. Rapp, Drexel University, College of Medicine USA

MS – 14. Cognitive Neurodynamics of Attention: Bottom-Up and Top-Down
Soo-young Lee, Korea Advanced Institute of Science and Technology Korea
Minho Lee, Kyungpook National University Korea

MS – 15. Structure Formation through Interaction
Andreas Dress, CAS-MPG Partner Institute for Computational Biology (PICB) Germany
Shanghai Institutes for Biological Sciences (SIBS) China
Chinese Academy of Sciences (CAS),

Proceeding Chair
Shen, Enhua East China University of Science and Technology P.R.China

Finance Chair
Shi, Yongde Shanghai Society for Biophysics P.R.China

Secretary
Qian, Zhiqin East China University of Science and Technology P.R.China
Adeli,
Aertsen,
Aihara,
Amari,
Andras,
Andrew,
Borisyuk,
Brette,
Cao,
Cao,
Chen,
Chen,
Cheng,
Chow,
Del Moral Hernandez,
Denham,
Depireux,
Ding,
Dress,
Duch,
Egan,
Érdi,
Erwin,
Feldman,
Fellous,
Franceschini,
Freeman,
Fujii,
Gao,
Giese,
Goldfarb,
Graham,
Grossberg,
Hojjat
Ad
Kazuyuki
Shun-ichi
Peter
Laung
Roman
Romain
Jianting
Jinde
Liqun
Zhe
Feiyan
T.
Emilio
Mike
Didier
Mingzhou
Andreas
Wlodzislaw
Gary
Peter
Harry
Jerry
Jean-Marc
Nicolas
Walter J.
Hiroshi
Shangkai
Martin
Lev
Lyle J.
Stephen
Gu, Fanji
Gu, Huaguang
Gu, Xingsheng
Guo, Aike
Haken, Hermann
Han, Seung Kee
Han, Shihui
Hayashi, Hatsuo
Hellgren, Kotasleski Jeanette
Hertz, John
Hillyard, Steven A.
Hofmann, Ulrich G.
Hu, Haiyan
Jiang, Tianzi
Jiao, Xianfa
Kamel, Mohamed
Kashimori, Yoshiki
Kaski, Samuel
Kay, Leslie M.
Kendall, Graham
Konig, Peter
Kopell, Nancy J.
Kotter, Rolf
Kozma, Robert
Lanyon, Linda
Lappe, Markus
Lee, Soo-Young
Lee, Vincent C. S.
Li, Chaoyi
Li, Guang
Li, Lei
Liang, Hualou
Liang, Peiji
Liljenstrom, Hans
Liu, Shenquan
Lu, Huiming
Lu, Qishao
Maass, Wolfgang
Matsuoka, Kiyotosh
Nara, Shigetoshi
Neskovic, Pedja
Ogmen, Haluk
Okada, Masato
Olds, James L.
Omlor, Lars
Principe, Jose C.
Rabinovich, Mikhail I.
Rapp, Paul E.
Redman, Steve
Richmond, Barry J.
Rutkowski, Tomasz
Safronov, Boris V.
Sandner, Guy
Sato, Shunsuke
Schoener, Gregor
Shao, Zhiqing
Shen, Enhua
Shi, Hongbo
Shou, Tiande
Siegel, Ralph Mitchell
Sokoloff, Louis
Sporns, Olaf
Szeto, Kwok Yip
Tanaka, Toshihisa
Tang, Akaysha
Tang, Xiaowei
Taylor, John
Teich, Malvin Carl
Trappenberg, Thomas
Tsuda, Ichiro
Tsukada, Minoru
Usui, Shiro
van Leeuwen, Cees
van Ooyen, Arjen
van Pelt, Jaap
Ventriglia, Francesco
Vialatte, Francois
Wang, Bin
Wang, Deliang
Wang, Lipo
Wang, Rubin
Wang, Xingyu
Washizawa, Yoshikazu
Wermter, Stefan
Wohrer, Adrien
Wright, James
Xu, Jian
Xu, Jianxue
Yamaguchi, Yoko
Yang, Fusheng
Yang, Yufang
Young, Eric D.
Yu, Hongjie
Zhang, Liqing
Zhang, Wei
Zhang, Yi