Agroforestry in Europe

Current Status and Future Prospects
Advances in Agroforestry

Volume 6

Series Editor:
P.K.R. Nair
School of Forest Resources and Conservation,
University of Florida, Gainesville, Florida, U.S.A.

Aims and Scope

Agroforestry, the purposeful growing of trees and crops in interacting combinations, began to attain prominence in the late 1970s, when the international scientific community embraced its potentials in the tropics and recognized it as a practice in search of science. During the 1990s, the relevance of agroforestry for solving problems related to deterioration of family farms, increased soil erosion, surface and ground water pollution, and decreased biodiversity was recognized in the industrialized nations too. Thus, agroforestry is now receiving increasing attention as a sustainable land-management option the world over because of its ecological, economic, and social attributes. Consequently, the knowledge-base of agroforestry is being expanded at a rapid rate as illustrated by the increasing number and quality of scientific publications of various forms on different aspects of agroforestry.

Making full and efficient use of this upsurge in scientific agroforestry is both a challenge and an opportunity to the agroforestry scientific community. In order to help prepare themselves better for facing the challenge and seizing the opportunity, agroforestry scientists need access to synthesized information on multi-dimensional aspects of scientific agroforestry.

The aim of this new book-series, Advances in Agroforestry, is to offer state-of-the art synthesis of research results and evaluations relating to different aspects of agroforestry. Its scope is broad enough to encompass any and all aspects of agroforestry research and development. Contributions are welcome as well as solicited from competent authors on any aspect of agroforestry. Volumes in the series will consist of reference books, subject-specific monographs, peer-reviewed publications out of conferences, comprehensive evaluations of specific projects, and other book-length compilations of scientific and professional merit and relevance to the science and practice of agroforestry worldwide.

For other titles published in this series, go to
www.springer.com/series/6904
Antonio Rigueiro-Rodríguez • Jim McAdam
María Rosa Mosquera-Losada
Editors

Agroforestry in Europe

Current Status and Future Prospects
Foreword

Agroforestry has come of age during the past three decades. The age-old practice of growing trees and crops and sometimes animals in interacting combinations – that has been ignored in the single-commodity-oriented agricultural and forestry development paradigms – has been brought into the realm of modern land-use. Today agroforestry is well on its way to becoming a specialized science at a level similar to those of crop science and forestry science.

To most land-use experts, however, agroforestry has a tropical connotation. They consider agroforestry as something that can and can only be identified with the tropics. That is a wrong perception. While it is true that the tropics, compared to the temperate regions, have a wider array of agroforestry systems and hold greater promise for potential agroforestry interventions, it is also true that agroforestry has several opportunities in the temperate regions too. Indeed, the role of agroforestry is now recognized in Europe as exemplified by this book, North America, and elsewhere in the temperate zone. Current interest in ecosystem management in industrialized countries strongly suggests that there is a need to embrace and apply agroforestry principles to help mitigate the environmental problems caused or exacerbated by commercial agricultural and forestry production enterprises. If we are to meet the society’s needs and aspirations for forest-derived goods and services, we must find ways of augmenting traditional forestry by gleaning some portion of these benefits from agricultural lands where agroforestry can be practiced. In many places, the only opportunity to provide increased forest-based benefits, such as wildlife habitat or forested riparian systems, is through the increased use of agroforestry on agricultural lands. The publication of this book is very timely. As the editors say, the European Union has recognized the economic, ecological, and social advantages of agroforestry in its rural development policy; but the implementation of the policy is adversely affected by the lack of adequate information on the subject. The need for such a book is obvious.

I want to say how much I appreciate the enormous amount of work involved in bringing together such a volume. The state of agroforestry in Europe and literature on it being at early stages of development, it must have been a daunting task for the authors to piece together the information they have so painstakingly gathered for their chapters. I congratulate all the authors and the editors for such a
wonderful job. Undoubtedly, this is a significant contribution to agroforestry literature worldwide and a great service to the fledgling field of European agroforestry.

Distinguished Professor P. K. Ramachandran Nair
University of Florida September 2008
Gainesville, Florida, USA
(Editor, Advances in Agroforestry Book-Series)
Preface

While recent EU Rural Development policy clearly recognizes the economic, ecological, and social advantages of agroforestry systems, to date the implementation of such systems has been poor so far throughout most of Europe. In light of this, this collection of peer-reviewed papers brings together some of the most important current research in European agroforestry, and evaluates the current scope and future potential of agroforestry across the EU.

This volume contains a selection of papers covering the most recent research, embracing the wide range of geographical zones and crops and livestock systems found in Europe. While the majority of Europe’s agroforestry practices are currently focused in the Mediterranean, this volume draws together examples from a wide range of countries – including France, Germany, Greece, Hungary, Ireland, Italy, Portugal, Slovenia, Spain, Switzerland, the Netherlands and the UK. The book also covers a range of agroforestry types, including silvopasture – Europe’s predominant form of agroforestry – silvoarable, forest farming and multipurpose trees, but also explains some other practices like improved fallow and riparian buffer strips. Through these examples the book also discusses the potential roles for these traditional land management systems in addressing both environmental issues such as carbon sequestration, water quality, biodiversity conservation, desertification, soil preservation ecosystem services and socioeconomic issues such as rural population stabilization.

Augmented by detailed reviews of the main elements of European agroforestry and the issues that face it, this timely collection of research papers provides a valuable reference for advanced students and researchers, administrators and policy makers interested in a wide range of issues around land use, rural development, natural resource management, landscape ecology and conservation across Europe, and for those interested in agroforestry – including practitioners, researchers and extension organizations – worldwide.

This book is structured in four main parts: the Introduction, the European Mediterranean Agroforestry systems, the European Atlantic Agroforestry systems and the European Continental, Pannonian and Alpine Agroforestry systems. At the end of the book a chapter related to future directions is provided.

The Introduction part give the reader a general perspective on the development of agroforestry practices and systems in Europe in fourth chapters. It is important
to highlight that there has been no previous attempt in describing agroforestry in pan-European level although there are some books and other publications dealing with specific aspects of the main agroforestry practices implemented, e.g. silvopasture. The first chapter of the book introduces the reader to the description of the main agroforestry practices found in Europe: silvoarable, forest farming, riparian buffer strips, silvopasture, improved fallow and multipurpose trees. The current situation of the main components of agroforestry systems, i.e. tree and agricultural (including pasture and livestock), are briefly described to give the reader an initial balanced perspective on the status of European agroforestry systems and practices at a farm level. The second chapter reviews different types of classifications and functions of current agroforestry systems in Europe according to their components, spatial and temporal arrangements, functions, agroecological zone and socio-economic aspects, focusing on silvopastoral and silvoarable practices, the main types of agroforestry practiced in Europe. The third chapter of this part of the book is related to the future perspective for the use of these agroforestry systems at a farm level, based on their productive and ecological advantages. The fourth and final chapter of this part of the book deals with a social study conducted at 14 locations in seven countries within the European Union, to evaluate the degree of knowledge about agroforestry practices and the potential benefits and disadvantages that they can bring to farmers.

Part II dealing European Mediterranean Agroforestry systems has 10 chapters (Chapters 5 to 14). These chapters provide descriptions and development of agroforestry systems in the densely populated countries of the Mediterranean areas and examine how the economics of agroforestry systems in Europe has changed over time due to the different social conditions of the farmers. The countries/regions to which the chapters relate include Greece (Chapter 5), the transitional Atlantic-Mediterranean area of Western Europe (Chapter 6) and the four autonomous regions of the Mediterranean part of Spain: Cataluña, Murcia, Extremadura and Andalusia (Chapters 7 to 10). These have very different rural social structure, physical mountain geography and Mediterranean climate sub-classification types. While dehesa, the most widespread agroforestry system of southern Europe is the focus of Chapter 7. Chapter 8 deals with the forest grazing type of agroforestry practice in Cataluña. Chapter 9 presents studies on agroforestry practices in a river basin and along an altitudinal and precipitation gradient from 0 to 2,000 m asl and from 300 to 1,000 mm year⁻¹, respectively, in southern Spain. Various aspects of silvopasture are included in detail in the next two chapters (10 and 11). Chapter 12 deals with the main types of agroforestry practices in the Mediterranean and Alpine biogeographic regions of Italy. This chapter also evaluates the connection between them through traditional and current management. A socioeconomic study of cork oak agroforestry systems is the subject of Chapter 13. The part concludes with Chapter 14 that deals with forest farming, explaining the history of truffle production within the main European countries and presenting a synthesis of the best practices to reach high truffle productivity.

The next book part (Part III) deals with the European Atlantic Agroforestry systems in three chapters. This biogeographic region is characterized by having a
history of clear-cut separation between forest and agricultural land, at all levels including education, farming systems and policy. Allocation of the most productive areas to agricultural production, often at the expense of forest, has been an important feature of the land-use policy in the region. Thus, agroforestry systems are neither widespread nor properly implemented in this part of Europe. In the recent years, some important afforestation schemes have been carried out in this zone, even though some parts have the lowest proportion of forestland in Europe. The first paper of this part of the book (Chapter 15) describes a methodology used to locate the dominant trees distributed throughout Europe and demonstrates the advantages of applying stratification to estimate a complex land use resource, using the different ecological conditions found in the region. Chapter 16 deals with the development over time and description of current agroforestry practices in the Netherlands, while the opportunities for introducing silvopastoral and silvoarable systems in Ireland, one of the least forested areas of Europe, is the focus of Chapter 17. The chapters in this part clearly bring out the point that the main driving force behind the introduction of such systems in the region is the promotion of floral and faunal biodiversity and other aspects of environmental sustainability that are adversely impacted by agriculture.

The final part of the book deals with European Continental, Pannonian and Alpine Agroforestry systems in four chapters and explains that the main aims of implementing agroforestry systems in these areas are to exploit the environmental and crop protection functions offered by trees. The implementation of agroforestry practices in Germany is described in Chapter 18, whereas Chapter 19 describes the Alpine regions silvopastoral systems in Switzerland, where, unlike in the Mediterranean areas, supplementary food for livestock is obtained during summer time. Chapter 20 presents the Slovenian perspectives on agroforestry covering not only Alpine and Continental areas, but also Mediterranean areas and even some areas with Atlantic climatic characteristics. The final chapter of this part (Chapter 21) describes the specific characteristics of silvopastoral and silvoarable agroforestry practiced in the Pannonian region and explains how implementation practices such as hedgerows is very important in dealing with the special climatic characteristics of wind and snow in the region.

This book concludes with a synthesis (Chapter 22) of the information presented in the various chapters emphasizing the major challenges as well as opportunities of agroforestry in Europe.

We hope that this collection of research papers, augmented by detailed reviews of the main elements of European agroforestry and the issues facing it, will be a valuable reference source for advanced students and researchers, administrators and policy makers interested in a wide range of issues around land use, rural development, natural resource management, landscape ecology, and conservation across Europe, and for those interested in agroforestry – including practitioners, researchers and extension organizations – worldwide.

We thank all authors of individual chapters for their excellent contributions as well as splendid cooperation in dealing with repeated revisions of their manuscripts. Each chapter was peer-reviewed; the reviewers did a superb job in enhancing the
content and presentation quality of the respective chapters. Finally, a special word of appreciation to Professor P.K. Nair, the book-series editor, for suggesting the idea for such a book, and following it through its completion with consistent encouragement and valuable directives thought the process.

Rigueiro-Rodríguez A
McAdam A
Mosquera-Losada MR (Book Coordinator)
Contents

Foreword ... v
Preface ... vii
Contributors .. xv
Reviewers .. xxi

Part I Introduction

1 Definitions and Components of Agroforestry Practices in Europe . . . 3
 M.R. Mosquera-Losada, J.H. McAdam, R. Romero-Franco,
 J.J. Santiago-Freijanes, and A. Rigueiro-Rodríguez

2 Classifications and Functions of Agroforestry Systems in Europe 21
 J.H. McAdam, P.J. Burgess, A.R. Graves, A. Rigueiro-Rodríguez,
 and M.R. Mosquera-Losada

3 Agroforestry Systems in Europe: Productive, Ecological
 and Social Perspectives .. 43
 A. Rigueiro-Rodríguez, E. Fernández-Núñez, P. González-Hernández,
 J.H. McAdam, and M.R. Mosquera-Losada

4 Farmer Perceptions of Silvoarable Systems in Seven European Countries 67
 A.R. Graves, P.J. Burgess, F. Liagre, A. Pisanelli, P. Paris, G. Moreno,
 M. Bellido, M. Mayus, M. Postma, B. Schindler, K. Mantzanas,
 V.P. Papanastasis, and C. Dupraz

Part II European Mediterranean Agroforestry Systems

5 Traditional Agroforestry Systems and Their Evolution in Greece . . . 89
 V.P. Papanastasis, K. Mantzanas, O. Dini-Papanastasi, and I. Ispikoudis
6 Silvopastoral Systems in Portugal: Current Status and Future Prospects
M. Castro

7 The Functioning, Management and Persistence of Dehesas
G. Moreno and F.J. Pulido

8 Silvopastoral Systems in the Northeastern Iberian Peninsula: A Multifunctional Perspective
P. Casals, T. Baiges, G. Bota, C. Chocarro, F. de Bello, R. Fanlo, M.T. Sebastià, and M. Taull

9 Agroforestry Systems in Southeastern Spain
E. Correal, M. Erena, S. Ríos, A. Robledo, and M. Vicente

10 Role of Livestock Grazing in Sustainable Use, Naturalness Promotion in Naturalization of Marginal Ecosystems of Southeastern Spain (Andalusia)
A.B. Robles, J. Ruiz-Mirazo, M.E. Ramos, and J.L. González-Rebollar

11 Role of Various Woody Species in Spanish Mediterranean Forest and Scrubland as Food Resources for Spanish Ibex (Capra pyrenaica Schinz) and Red Deer (Cervus elaphus L.)
T. Martínez

12 Agroforestry Systems in Italy: Traditions Towards Modern Management
A. Pardini

13 Economics of Multiple Use Cork Oak Woodlands: Two Case Studies of Agroforestry Systems
P. Campos, H. Daly-Hassen, P. Ovando, A. Chebil, and J.L. Oviedo

14 European Black Truffle: Its Potential Role in Agroforestry Development in the Marginal Lands of Mediterranean Calcareous Mountains
S. Reyna-Domenech and S. García-Barreda

Part III European Atlantic Agroforestry Systems

15 Assessment of the Extent of Agroforestry Systems in Europe and Their Role Within Transhumance Systems
R.G.H. Bunce, M. Pérez-Soba, and M. Smith
16 Agroforestry in the Netherlands .. 331
 A. Oosterbaan and A.T. Kuiters

17 The Potential for Silvopastoralism to Enhance Biodiversity
 on Grassland Farms in Ireland .. 343
 J.H. McAdam and P.M. McEvoy

Part IV European Continental Pannonian and Alpine
 Agroforestry Systems

18 Wood Pastures in Germany ... 359
 R. Luick

19 The Swiss Mountain Wooded Pastures: Patterns
 and Processes ... 377
 A. Buttler, F. Kohler, and F. Gillet

20 In Slovenia: Management of Intensive Land
 Use Systems ... 397
 M. Vidrih, T. Vidrih, and M. Kotar

21 The Traditions, Resources and Potential of Forest Growing
 and Multipurpose Shelterbelts in Hungary 415
 V. Takács and N. Frank

Future Directions for Agroforestry in Europe 435
 M.R. Mosquera-Losada, J.H. McAdam, and A. Rigueiro-Rodríguez

Species Index ... 439

Subject Index .. 445
Contributors

T. Baiges
Centrde de la Propietat Forestal (CPF), Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, Torreferrussa, Spain

M. Bellido
Universidad de Extremadura, Plasencia, Spain

G. Bota
Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Spain

R.G.H. Bunce
Alterra Green World Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands

P.J. Burgess
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

A. Buttler
Swiss Federal Research Institute WSL Site Lausanne, Switzerland; Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Ecological Systems, 1015 Lausanne, Switzerland; Laboratoire de Chrono-écologie, UMR 6565 CNRS, Université de Franche-Comté, Besançon, France

P. Campos
Institute of Economics and Geography of Spanish National Research Council (CSIC), Spain

P. Casals
Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Paterna, Valencia, Spain; Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Spain

M. Castro
Escola Superior Agrária de Bragança, Apartado 172, 5301-855 Bragança, Portugal

A. Chebil
Tunisian Research Institute of Rural Engineering, Water and Forest (INRGREF), B.P. 10, 2080 Ariana, Tunisia
C. Chocarro
Escola Tècnica i Superior d’Enginyeria Agrícola, University of Lleida, Lleida, Spain

E. Correal
IMIDA, Finca Sericicola 30150 La Alberca, Murcia, Spain

H. Daly-Hassen
Tunisian Research Institute of Rural Engineering, Water and Forest (INRGREF),
B.P. 10, 2080 Ariana, Tunisia

F. de Bello
Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Spain

O. Dini-Papanastasi
National Agricultural Research Foundation, Forest Research Institute, GR-570 06 Vassilika, Thessaloniki, Greece

C. Dupraz
Institut National de la Recherche Agronomique, 2 Place Viala, 34060 Montpellier, France

M. Erena
IMIDA, Finca Sericicola 30150 La Alberca, Murcia, Spain

R. Fanlo
Escola Tècnica i Superior d’Enginyeria Agrícola, University of Lleida, Lleida, Spain

E. Fernández-Núñez
Crop Production Department, High Politechnic School, University of Santiago de Compostela, 27002 Lugo, Spain

N. Frank
Department of Silviculture, Faculty of Forestry, University of West Hungary,
Bajcsy-Zs. u. 4. 9400, Sopron, Hungary

S. García-Barreda
Fundación Centro de Estudios Ambientales del Mediterráneo (Fundación CEAM),
C/Charles R Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Italy

F. Gillet
Swiss Federal Research Institute WSL Site Lausanne, Switzerland; Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Ecological Systems, 1015 Lausanne, Switzerland

P. González-Hernández
Crop Production Department, High Politechnic School, University of Santiago de Compostela, 27002 Lugo, Spain

J.L. González-Rebollar
Estación Experimental del Zaidín – CSIC/IFAPA-CIFA, Granada, Spain
A.R. Graves
Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK

I. Ispikoudis
Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece

F. Kohler
Swiss Federal Research Institute WSL Site Lausanne, Switzerland; Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Ecological Systems, 1015 Lausanne, Switzerland

M. Kotar
Biotechnical Faculty, Department of Forestry and Renewable Forest Resources, University of Ljubljana, Chair for Forest Management planning and Biometrics, Vecna pot 83, SI-1111 Ljubljana, Slovenia

A.T. Kuiters
Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands

F. Liagre
Assemblée Permanente des Chambres d’Agriculture, 9 Avenue Georges V, 75008 France, Paris

R. Luick
University of Rottenburg, Germany

K. Mantzanas
Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece

T. Martínez
Instituto Madrileño de Investigación Agraria (IMIA), El Encín, Apdo 127, Alcalá de Henares, Madrid, Spain

M. Mayus
Wageningen University, Wageningen, The Netherlands

J. McAdam
Department of Applied Plant Science, Queens University, Belfast, Northern Ireland, UK; Applied Plant Science and Biometrics Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK

P.M. McEvoy
Applied Plant Science and Biometrics Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK

G. Moreno
Dpto de Biología Vegetal, Ecología y Ciencias de la Tierra, I.T. Forestal (Forestry School), Universidad de Extremadura, Plasencia, Spain
M.R. Mosquera-Losada
Crop Production Department, High Politechnic School, University of Santiago de Compostela, 27002 Lugo, Spain

A. Oosterbaan
Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands

P. Ovando
Institute of Economics and Geography of Spanish National Research Council (CSIC), Spain

J.L. Oviedo
Tunisian Research Institute of Rural Engineering, Water and Forest (INRGREF), B.P. 10, 2080 Ariana, Tunisia

V.P. Papanastasis
Faculty of Forestry and Natural Environment, Aristotle University of Thessaloniki, GR- 541 24, Thessaloniki, Greece

A. Pardini
Department of Agronomy and Land Management, University of Florence, Italy

P. Paris
Istituto di Biologia Agro-ambientale e Forestale, CNR, Porano, Italy

M. Pérez-Soba
Alterra Green World Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands

A. Pisanelli
Istituto di Biologia Agro-ambientale e Forestale, CNR, Porano, Italy

M. Postma
Wageningen University, Wageningen, The Netherlands

F.J. Pulido
Ingeniería del Medio Agrícola y Forestal, I.T. Forestal (Forestry School), Universidad de Extremadura, Extremadura, Spain

M.E. Ramos
Estación Experimental del Zaidín – CSIC/IFAPA-CIFA, Granada, Spain

S. Reyna-Domenech
Fundación Centro de Estudios Ambientales del Mediterráneo (Fundación CEAM), C/Charles R Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Italy

A. Rigueiro-Rodríguez
Crop Production Department, High Politechnic School, University of Santiago de Compostela, 27002 Lugo, Spain

S. Ríos
CIBIO, Universidad Alicante, Alicante, Spain
A. Robledo
Islaya, Consultoría Ambiental, Murcia, Spain

A.B. Robles
Estación Experimental del Zaidín – CSIC/IFAPA-CIFA, Granada, Spain

R. Romero-Franco
Crop Production Department, University of Santiago de Compostela, 27002 Lugo, Spain

J. Ruiz-Mirazo
Estación Experimental del Zaidín – CSIC/IFAPA-CIFA, Granada, Spain

J.J. Santiago-Freijanes
Crop Production Department, University of Santiago de Compostela, 27002, Lugo, Spain

B. Schindler
FINIS, Groß Zecher, Germany

M.T. Sebastià
Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Spain; Escola Tècnica i Superior d’Enginyeria Agrícola, University of Lleida, Lleida, Spain

M. Smith
23 Colinton Mains, The Green, Edinburgh EH13 9AC, Scotland

V. Takács
Department of Silviculture, Faculty of Forestry, University of West Hungary, Bajcsy-Zs. u. 4. 9400 Sopron, Hungary

M. Taull
Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Spain; Escola Tècnica i Superior d’Enginyeria Agrícola, University of Lleida, Lleida, Spain

M. Vicente
D. G. Medio Natural, Murcia, Spain

M. Vidrih
Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Chair of Fodder Production and Pasture Management, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia

T. Vidrih
Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Chair of Fodder Production and Pasture Management, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
Reviewers

Aloui A
Silvopastoral Institute, Tunisie

Belesky D
AFSRC, USDA, USA

Boubaker A
Institut National Agronomique de Tunis, Tunisie

Cañellas I
CSIC, Spain

Casals P
CEAM, Spain

Castro M
Escola Superior Agrária de Bragança, Universidade de Braganza

Fanlo R
Escola Tècnica i Superior d’Enginyeria Agrícola. University of Lleida, Spain

Farrel T
School of Biology and Environmental Science, Dublin, Ireland

Fernández-Núñez E
Universidad de Santiago de Compostela, Spain

González-Hernández MP
Universidad de Santiago de Compostela, Spain

González-Rodríguez A
CIAM, Spain

Gonzalo Julián
Universidad de Valladolid, Spain

López ML
Universidad de Extremadura, Spain
McEvoy P
Universidad de Belfast, UK

Moreno G
Universidad de Extremadura, Spain

Mueller P
University Raleigh, USA

Najar T
Institut Nacional Agronomique de Tunis, Tunisie

Oliveira-Prendes A
Universidad de LLeida, Spain

Osoro K
SERIDA, Spain

Palai M
Forest Technology Centre of Catalonia, Spain

Paoli JC
INRA, France

Pantera A
Technological educacion institute of Lamia, Greece

Papanastasis VP
University of Thessaloniki, Greece

Pardini A
University of Firenze, Italy

Parlade J
Institute for Food and Agricultural Research and Technology, Spain

Piñeiro J
CIAM, Spain

Pinto M
NEIKER, Spain

Pulido F
University of Extremadura, Spain

Rebollar JL
CSIC, Spain

Robles A
CSIC, Spain

Rodríguez-Barreira S
Universidad de Santiago de Compostela, Spain
Rodríguez-Guitian MA
Universidad de Santiago de Compostela, Spain

Rodríguez-Soalleiro R
Universidad de Santiago de Compostela, Spain

Rois M
Forest Technology Centre of Catalonia, Spain

Romero-Franco R
Universidad de Santiago de Compostela, Spain

Rozados MJ
Centro de investigaciones forestales de Lourizán, Spain

Sainz MJ
Universidad de Santiago de Compostela, Spain

Santiago-Freijanes JJ
Universidad de Santiago de Compostela, Spain

Sibbald A
Farm Woodland Forum, UK

Silva-Pando FJ
Centro de investigaciones forestales de Lourizán, Spain

Snyder Unruh LJ
University of Florida, USA

Vidrih M
University of Ljubljana, Slovenia