SUBCELLULAR BIOCHEMISTRY

SERIES EDITOR
J. ROBIN HARRIS, University of Mainz, Mainz, Germany

ASSISTANT EDITORS
B.B. BISWAS, University of Calcutta, Calcutta, India
P. QUINN, King’s College London, London, U.K.

Recent Volumes in this Series

Volume 31 Intermediate Filaments
Edited by Harald Herrmann and J. Robin Harris

Edited by Uri Galili and Jos-Luis Avila

Volume 33 Bacterial Invasion into Eukaryotic Cells
Tobias A. Oeschlaeger and Jorg Hacker

Volume 34 Fusion of Biological Membranes and Related Problems
Edited by Herwig Hilderson and Stefan Fuller

Volume 35 Enzyme-Catalyzed Electron and Radical Transfer
Andreas Holzenburg and Nigel S. Scrutton

Volume 36 Phospholipid Metabolism in Apoptosis
Edited by Peter J. Quinn and Valerian E. Kagan

Volume 37 Membrane Dynamics and Domains
Edited by P.J. Quinn

Volume 38 Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid beta
Edited by R. Harris and F. Fahrenholz

Volume 39 Biology of Inositols and Phosphoinositides
Edited by Lahiri Majumder and B.B. Biswas

Volume 40 Reviews and Protocols in DT40 Research
Edited by Jean-Marie Buerstedde and Shunichi Takeda

Volume 41 Chromatin and Disease
Edited by Tapas K. Kundu and Dipak Dasgupta

Volume 42 Inflammation in the Pathogenesis of Chronic Diseases
Edited by Randall E. Harris
Subcellular Proteomics
From Cell Deconstruction to System Reconstruction
Subcellular Biochemistry Volume 43

Edited by

Eric Bertrand
and
Michel Faupel

Novartis Institutes of Biomedical Research,
Basel,
Switzerland

Springer
INTERNATIONAL ADVISORY EDITORIAL BOARD

R. BITTMAN, Queens College, City University of New York, New York, USA
D. DASGUPTA, Saha Institute of Nuclear Physics, Calcutta, India
H. ENGELHARDT, Max-Planck-Institute for Biochemistry, Munich, Germany
L. FLOHE, MOLISA GmbH, Magdeburg, Germany
H. HERRMANN, German Cancer Research Center, Heidelberg, Germany
A. HOLZENBURG, Texas A & M University, Texas, USA
H-P. NASHEUER, National University of Ireland, Galway, Ireland
S. ROTTEM, The Hebrew University, Jerusalem, Israel
M. WYSS, DSM Nutritional Products Ltd., Basel, Switzerland
P. ZWICKL, Max-Planck-Institute for Biochemistry, Munich, Germany
To Michel and his speedy recovery. His experience and enthusiasm have been sorely missed in the final stages of preparing this volume.

To my son, Alexandre, far from me now, but still close to my heart.

To my mother, who has been a source of inspiration in many more ways than she could have imagined.

Eric
TABLE OF CONTENTS

Acknowledgements xiii
List of Contributors xv
Introduction xxi

SECTION 1 MEMBRANE PROTEOMICS 1
1. Keynotes on Membrane Proteomics 3
 Thierry Rabilloud
2. Two-Dimensional BAC/SDS-PAGE for Membrane Proteomics 13
 René P. Zahedi, Jan Moebius and Albert Sickmann
3. Microparticles: A New Tool for Plasma Membrane Sub-cellular Proteomic 21
 Laurent Miguet, Sarah Sanglier, Christine Schaeffer, Noelle Potier,
 Laurent Mauvieux and Alain Van Dorsselaer
4. Lipid Raft Proteomics: More than Just Detergent-Resistant Membranes 35
 Leonard J. Foster and Queenie W. T. Chan

SECTION 2 ORGANELLE SUBPROTEOMES 49
5. Organelle Proteome Variation Among Different Cell Types:
 Lessons from Nuclear Membrane Proteins 51
 Deirdre M. Kavanagh, William E. Powell, Poonam Malik,
 Vassiliki Lazou and Eric C. Schirmer
6. Synaptosome Proteomics 77
 Fengju Bai and Frank A. Witzmann
Table of contents

7. Proteomic Analysis of Secreted Exosomes
Christine Olver and Michel Vidal
99

SECTION 3 CHARACTERIZATION OF SUPRAMOLECULAR PROTEIN COMPLEXES
133

8. From Protein–Protein Complexes to Interactomics
Vincent Collura and Guillaume Boissy
135

9. Supramolecular Signalling Complexes in the Nervous System
M.O. Collins and S.G.N. Grant
185

10. Protein Networks and Complexes in Photoreceptor Cilia
Ronald Roepman and Uwe Wolfrum
209

SECTION 4 SUBCELLULAR SYSTEMS BIOLOGY
237

11. Systems Biology and the Reconstruction of the Cell: From Molecular Components to Integral Function
Frank J. Bruggeman, Sergio Rossell, Karen van Eunen, Jildau Bouwman, Hans V. Westerhoff and Barbara Bakker
239

12. Automated, Systematic Determination of Protein Subcellular Location using Fluorescence Microscopy
Elvira García Osuna and Robert F. Murphy
263

Marie-Elaine Caruso and Eric Chevet
277

SECTION 5 EMERGING TECHNOLOGIES IN PROTEOMICS
299

Joerg Martini, Wibke Hellmich, Dominik Greif, Anke Becker, Thomas Merkle, Robert Ros, Alexandra Ros, Katja Toensing and Dario Anselmetti
301

15. Biophotonics Applied to Proteomics
Michel Faupel, Débora Bonenfant, Patrick Schindler, Eric Bertrand, Dieter Mueller, Markus Stoeckli, Francis Bitsch, Tatiana Rohner, Dieter Slaab and Jan Van Oostrum
323
Table of contents

 Xiaodan Tian, Madalina Maftei, Markus Kohlmann, Bernadette Allinquant and Michael Przybylski

17. LC-MALDI MS and MS/MS – An Efficient Tool in Proteome Analysis 355
 Dieter R. Mueller, Hans Voshol, Annick Waldt, Brigitte Wiedmann and Jan van Oostrum

Index 381

Color Plates 385
ACKNOWLEDGEMENTS

In light of the somewhat eventful circumstances in which the current volume came into being, we are sincerely grateful to the people who contributed to its preparation. Their hard work as well as their patience and kind understanding toward the editors were greatly appreciated. We are most grateful to Mary Johnson, who acted as the publishing editor for this volume. We wish to thank all of the contributors and their staff for submitting their respective chapters as needed, despite busy teaching and research schedules. We would also like to acknowledge several very good friends for their voluntary editorial assistance and even more importantly their unfailing moral support: Eileen Rojo, Hugues Ryckelynck and Claire Mc Donack. Last, but by no mean least, we are particularly grateful to Dr. Robin Harris, who gave us the opportunity to edit this volume for the “Subcellular Biochemistry” book series.
LIST OF CONTRIBUTORS

Bernadette Allinquant
INSERM U573, Centre Paul Broca, Paris, France.

Dario Anselmetti
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.

Fengju Bai
Charles River Laboratories Preclinical Services, Safety Sciences, Worcester, Massachusetts, United States.

Barbara Bakker
BioCentre Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, Amsterdam, The Netherlands.

Anke Becker
Institute for Genome Research, Center for Biotechnology (CeBiTec) Bielefeld University, Bielefeld, Germany.

Eric Bertrand
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.

Guillaume Boissy
Hybrigenics S.A., Paris, France.

Débora Bonenfant
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.

Jildau Bouwman
BioCentre Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, Amsterdam, The Netherlands.
List of contributors

Frank J. Bruggeman
BioCentre Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, Amsterdam, The Netherlands and also Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BioCentre, University of Manchester, United Kingdom.

Marie-Elaine Caruso
Organelle signaling laboratory, Department of Surgery, McGill University, Montreal, Quebec, Canada.

Queenie W. T. Chan
UBC Centre for Proteomics, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.

Eric Chevet
Organelle signaling laboratory, Department of Surgery, McGill University, Montreal, Quebec, Canada.

Mark O. Collins
Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom.

Vincent Collura
Hybrigenics S.A., Paris, France.

Michel Faupel
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.

Leonard J. Foster
UBC Centre for Proteomics, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.

Elvira García Osuna
Center for Bioimage Informatics and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.

Seth G. N. Grant
Genes to Cognition, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom.

Dominik Greif
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.

Wibke Hellmich
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.
List of contributors

Deirdre M. Kavanagh
Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

Markus Kohlmann
Sanofi-Aventis Pharma, Structural & Physical Chemistry, Frankfurt am Main, Germany.

Vassiliki Lazou
Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

Madalina Maftei
Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, Konstanz, Germany.

Poonam Malik
Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

Joerg Martini
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.

Laurent Mauvieux
Institut d’Hématologie et d’Immunologie, Faculté de Médecine, Université Louis Pasteur and Laboratoire d’Hématologie, Hôpital Hautepierre, Strasbourg, France.

Thomas Merkle
Institute for Genome Research, Center for Biotechnology (CeBiTec) Bielefeld University, Bielefeld, Germany.

Laurent Miguet
Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, UMR/CNRS 7178, Institut Pluridisciplinaire Hubert CURIEN, Université Louis Pasteur, Strasbourg, France.

Jan Moebius
Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.

Dieter R. Mueller
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences /Systems Biology, Basel, Switzerland.

Robert F. Murphy
Center for Bioimage Informatics and Departments of Biological Sciences, Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.
List of contributors

Christine Olver
Clinical Pathology Section, Colorado State University, Ft Collins, United States.

Noelle Potier
Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, UMR/CNRS 7178, Institut Pluridisciplinaire Hubert CURIEN, Université Louis Pasteur, Strasbourg, France.

William E. Powell
Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

Michael Przybylski
Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, Konstanz, Germany.

Thierry Rabilloud

Ronald Roepman
Department of Human Genetics, Radboud University Nijmegen Medical Centre and Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.

Tatiana Rohner
Novartis Institutes for BioMedical Research, Discovery Technologies, Basel, Switzerland.

Robert Ros
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.

Alexandra Ros
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.

Sergio Rossell
BioCentre Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, Amsterdam, The Netherlands.

Sarah Sanglier
Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, UMR/CNRS 7178, Institut Pluridisciplinaire Hubert CURIEN, Université Louis Pasteur, Strasbourg, France.

Christine Schaeffer
Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, UMR/CNRS 7178, Institut Pluridisciplinaire Hubert CURIEN, Université Louis Pasteur, Strasbourg, France.
List of contributors

Patrick Schindler
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.

Eric C. Schirmer
Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.

Albert Sickmann
Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.

Dieter Staab
Novartis Institutes for BioMedical Research, Discovery Technologies, Basel, Switzerland.

Markus Stoeckli
Novartis Institutes for BioMedical Research, Discovery Technologies, Basel, Switzerland.

Xiaodan Tian
Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, Konstanz, Germany.

Katja Toensing
Experimental Biophysics and Applied Nanoscience, Physics Faculty, Bielefeld University and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Center for Biotechnology (CeBiTec), Bielefeld, Germany.

Alain Van Dorsselaer
Laboratoire de Spectrométrie de Masse Bio-Organique, ECPM, UMR/CNRS 7178, Institut Pluridisciplinaire Hubert CURIEN, Université Louis Pasteur, Strasbourg, France.

Karen van Eunen
BioCentre Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, Amsterdam, The Netherlands.

Jan van Oostrum
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.

Michel Vidal
UMR/CNRS 5235, University Montpellier II, Montpellier, France.

Hans Voshol
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.
List of contributors

Annick Waldt
Novartis Institutes for BioMedical Research, Genome and Proteome Sciences/Systems Biology, Basel, Switzerland.

Hans V. Westerhoff
BioCentre Amsterdam, Free University Amsterdam, Faculty of Earth and Life Sciences, Department of Molecular Cell Physiology, Amsterdam, The Netherlands and also Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BioCentre, University of Manchester, United Kingdom.

Brigitte Wiedmann
Novartis Institutes for BioMedical Research, Infectious Disease Area, Cambridge, Massachusetts, United States.

Frank A. Witzmann
Department of Cellular & Integrative Physiology, Indiana University School of Medicine Biotechnology Research & Training Center, Indianapolis, United States.

Uwe Wolfrum
Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Germany.

René P. Zahedi
Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany.
INTRODUCTION

As proteomics technologies are reaching a plateau in the number of proteins that can be resolved and detected, pre-fractionation steps have become essential to increase the depth of proteomic analysis. So far, many pre-fractionation steps have been based on chromatography methods where the proteins are separated according to their individual physicochemical properties. Subcellular fractionation methods proved to be very potent protein pre-fractionation steps: they allow the representation of low abundance proteins, and they can be combined with chromatography steps. Moreover, as the isolated subcellular components also represent functional units, subcellular fractionation allows the proteomic analysis of protein subsets that are functionally related in a biologically relevant manner. The first three sections of this volume deal with different levels of subcellular organization that also correspond to specific methodological approaches.

In his keynote chapter, Thierry Rabilloud superbly introduces the first section with a thorough definition of membrane proteomics where he pinpoints key theoretical and practical issues of this field, thereby setting the stage for the next contributions. Miguet et al. address the first key issue: the quality of the membrane preparation; they introduce and validate a microparticle strategy for plasma membrane purification. Zahedi et al. deal with the second major issue, the resolving of the hydrophobic proteins found in biological membrane samples, which they solve through two-dimensional BAC/SDS-PAGE gel electrophoresis. To close the first section, Foster and Chan review the proteomics of lipid rafts, membrane structures that are involved in intracellular trafficking and signal transduction. They describe a clever validation scheme based on the sensitivity of lipid rafts to cholesterol disruption.

A central theme in the second section on organelle subproteomes is the variability of their composition and how it can be exploited and interpreted. Kavanagh et al. describe a state-of-the-art subtractive proteomics scheme that relies on an in silico purification step based on the comparison of organelle subproteomes. With this approach, they could demonstrate variations in subproteome content across tissues. In the next chapter on synatosome proteomics, Bai and Witzmann review the current efforts to correlate synaptic plasticity and variations in synaptic subproteome content...
Introduction

with a special emphasis on post-translational modifications. Finally, Olver and Vidal discuss how the proteomic analysis of exosomes would give clues to the molecular basis of their biogenesis and contribute to a better understanding of their function. Moreover, they propose that the variations observed in exosome protein content are useful for biomarker discovery.

The third section deals with protein complexes, which are considered as the molecular machinery that performs most cell functions. This area is certainly not a trivial one: there are several types of protein complexes and protein-protein interactions and it is not always clear which methodology is most suitable to use in either context. In their chapter, Boissy and Collura sort out for us the concepts and methods encountered in interactomics, guide us through data interpretation issues and share with us their insight on the very nature of interactions. They plead for a systematic integration of interaction maps with functional genomics and molecular genetics data: the potential of such an approach is strikingly demonstrated in the next two chapters. Collins and Grant examine the molecular architecture of membrane associated signalling complexes in the nervous system, they highlight the role scaffolding proteins within these complexes and point out to a few much needed construction rules. Aligning interaction and functional genomics data, they build a case for a modular organisation of large complexes into functional sub-networks. To complete the picture, based on a thorough review on the complexes of the photoreceptor cilia, Roepman and Wolfrum sketch out an approach to organize complexes in functional modules and investigate their interactions.

Assuming that the protein content of an organelle has been inventoried and its protein complexes characterized, the next step is to translate this knowledge into functionally relevant interpretations. This is the purpose of systems biology: if we consider organelles as systems that function and communicate with each other through their protein machinery, it makes sense to apply such an approach at the subcellular level. In their chapter, Caruso and Chevet prove that this concept can actually be applied to reconstruct the stress signalling network of the endoplasmic reticulum. They build an integrative signalling map that qualitatively accounts for the interactions of the stress network with other endoplasmic reticulum machineries and also with other organelles. On the quantitative side, Bruggeman et al. introduce a theoretical framework for subcellular systems biology and thoroughly review the relevant mathematical approaches. Drawing on their extensive experience of metabolic networks, they argue that a direct translation of subcellular units as modules within a mathematical model of the cell can be advantageous both for solving the problem and interpreting the results. Garcia Osuna and Murphy survey the current automated methods for high-throughput determination of protein subcellular location that are used to reconstruct subcellular anatomy at high resolution. These methods provide essential information on the dynamic aspect of subcellular events in individual cells: it would also be extremely interesting to combine them with the molecular switches described by Martini et al. in the next section.

This brings us to the fifth and last section of this volume, where the most recent technological developments in proteomics are reviewed. Martini et al. introduce
the emerging field of systems nanobiology that relies on ultrasensitive methods and instruments to investigate cellular processes at the single molecule level. An application, among others, is to monitor the dynamics of protein translocation from one subcellular compartment to another using two-photon laser scanning microscopy and a photoactivable GFP as a molecular switch. Faupel et al. review the current applications of biophotonic technologies to proteomics with a focus on mass spectrometry based molecular imaging. Tian et al. describe a fast-track approach for the characterization of antibody epitopes using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The application of this method to the Amyloid Precursor Protein has important consequences for the study of intracellular processing pathways relevant to Alzheimer’s disease. Finally, Mueller et al. describe the interfacing of LC and MALDI-MS and – MS/MS, discuss its performance, and present selected applications in the proteomics field including the analyses of membrane proteins and protein interactions.