HANDBOOK OF SPATIAL LOGICS
HANDBOOK OF SPATIAL LOGICS

Edited by

MARCO AIELLO
University of Groningen

IAN PRATT-HARTMANN
University of Manchester

and

JOHAN VAN BENTHEM
University of Amsterdam

Springer
Preface

Space, with its manifold layers of structure, has been an inexhaustible source of intellectual fascination since Antiquity. The science that began with the empirical discoveries of the Egyptian ‘rope-stretchers’, and that has inspired many of the greatest developments in mathematics over the centuries, now comprises such topics as spatial databases, automated geometrical reasoning and digital image processing. In this long intellectual history, however, one relatively recent, yet crucial, event stands out: the rise of the logical stance in geometry. Fundamental to this development is the analysis of geometrical structures in relation to the formal languages used to describe them, and the recognition of the special mathematical challenges—and opportunities—which such an analysis presents. The interplay between logic and geometry is the subject of this book.

By a spatial logic, we mean any formal language for describing geometrical entities and configurations, where ‘geometrical’ is understood in a broad sense. Unlike their well-studied temporal counterparts, spatial logics have been curiously neglected in the literature on mathematical logic, despite some early pioneering work by Tarski and others on the foundations of geometry and topology in the middle years of the previous century. Only in the last decade have spatial logics attracted renewed attention from logicians, partly as a response to work in such diverse fields as artificial intelligence, database theory, physics and philosophy.

Today, there is a fast-growing body of literature on spatial logics, with motivations ranging from computational issues to the foundations of knowledge and information. But, for the newcomer to the field, this diversity of influences and approaches constitutes something of a mixed blessing: the field may be in a state of rapid development; but there is as yet no common research agenda, and no common vocabulary to allow ideas to be shared across disciplines. The aim of this book is to provide a resource which presents a view of the best current work in different communities worldwide, and which makes a first attempt at systematic linkage. We hope this will stimulate the development of spatial logic itself, but beyond this narrower purpose, we also hope to have provided a text that should be of value to non-logicians with an interest in formal theories of space.

The book consists of a general introduction followed by fourteen invited contributions on various topics in spatial logic, with authors representing the major active centres in the field. Each of these chapters provides a self-contained overview of its topic, describing the principal results obtained to date, explaining the methods used to obtain them, and listing the most important open problems.
Every contributed chapter has one or more ‘second readers’—experts in the field, who worked with the authors and editors to help ensure a comprehensive (and comprehensible) account of the topic in question.

The book is intended as a technical resource for academic researchers and graduate students. Familiarity with basic undergraduate-level logic, topology and geometry is generally assumed. Very roughly, the criterion of accessibility we have worked to is that a good graduate student interested in the area should, by working through any of these chapters, be able to acquire a firm understanding of the current state-of-the-art in that topic within the space of a few weeks. Jointly, these chapters provide—to the extent that this is ever possible in a rapidly evolving discipline—a comprehensive survey of the field of spatial logic as it stands today.

Marco Aiello

Ian Pratt-Hartmann

Johan van Benthem
Contents

Preface v
Contributing Authors xi
Second Readers xxi

1
What is Spatial Logic? 1
Marco Aiello, Ian Pratt-Hartmann, Johan van Benthem 1

2
First-Order Mereotopology 13
Ian Pratt-Hartmann 13
1. Introduction 13
2. Mereotopologies 14
3. Defining topological relations 26
4. Expressiveness of first-order languages in plane mereotopologies 38
5. Axiomatization 58
6. Spatial mereotopology 69
7. Model theory 82
8. Philosophical considerations 91

3
Axioms, Algebras and Topology 99
Brandon Bennett, Ivo Düntsch 99
1. Introduction 99
2. Preliminary definitions and notation 104
3. Contact relations 119
4. Boolean contact algebras 122
5. Other theories of topological relations 134
6. Reasoning about topological relations 137
7. Conclusion 149

4
Qualitative Spatial Reasoning Using Constraint Calculi 161
Jochen Renz, Bernhard Nebel 161
1. Introduction 161
2. Constraint-based methods for qualitative spatial representation and reasoning 163
3. Spatial constraint calculi 169
Contents

12. Line-based spatial logics 406
13. Tip spatial logics 411
14. Point-line spatial logics 416

8
Locales and Toposes as Spaces 429
Steven Vickers
1. Introduction 429
2. Opens as propositions 431
3. Predicate geometric logic 445
4. Categorical logic 457
5. Sheaves as predicates 474
6. Summary of toposes 488
7. Other directions 489
8. Conclusions 492

9
Spatial Logic + Temporal Logic = ? 497
Roman Kontchakov, Agi Kurucz, Frank Wolter, Michael Zakharyaschev
1. Introduction 497
2. Static and changing spatial models 501
3. Spatial logics 506
4. Temporal logics 527
5. Combination principles 531
6. Combining topo-logics with temporal logics 533
7. Combining distance logics with temporal logics 543
8. Logics for dynamical systems 546
9. Related ‘temporalised’ formalisms 557

10
Dynamic Topological Logic 565
Philip Kremer, Grigori Mints
1. Introduction 565
2. Basic definitions 569
3. Recurrence and the DTL of measure-preserving continuous functions on the closed unit interval 573
4. Purely topological and purely temporal fragments of DTLs 576
5. S4 is topologically complete for (0, 1) 579
6. The logic of homeomorphisms 586
7. The logic of continuous functions 592
8. Conclusion 604

11
Logic of Space-Time and Relativity Theory 607
Hajnal Andréka, Judit X. Madarász, István Németi
1. Introduction 607
2. Special relativity 608
3. General relativistic space-time 660
4. Black holes, wormholes, timewarp. Distinguished general relativistic space-times 683
5. Connections with the literature 705

12 Discrete Spatial Models 713
Michael B. Smyth, Julian Webster

1. Introduction 713
2. Preliminaries; correspondence principle 717
3. Čech closure spaces 723
4. Closure systems 725
5. Extended examples 730
6. (Boundary and) dimension 743
7. Discrete region geometry 749
8. Matroids 761
9. Spherical oriented matroids 768
10. Flat oriented matroids 783
11. Algebraic spatial models 787

13 Real Algebraic Geometry and Constraint Databases 799
Floris Geerts, Bart Kuijpers

1. From the relational database model to the constraint database model 799
2. Constraint data models and query languages 805
3. Introduction to real algebraic geometry 812
4. Query evaluation through quantifier elimination 822
5. Expressiveness results 829
6. Extensions of logical query languages 841

14 Mathematical Morphology 857
Isabelle Bloch, Henk Heijmans, Christian Ronse

1. Introduction 857
2. Algebra 876
3. Related approaches 897
4. Logics 918
5. Conclusion 936

15 Spatial Reasoning and Ontology: Parts, Wholes, and Locations 945
Achille C. Varzi

1. Philosophical issues in mereology 947
2. Philosophical issues in topology 975
3. Location theories 1012

Index 1039
Contributing Authors

Marco Aiello is Professor of Distributed Information Systems at the University of Groningen. He holds an MSc. in Engineering and Computer Science from the University of Rome “La Sapienza” (1997) and a PhD. in Computer Science and Logic from the University of Amsterdam (2002). From 2002 to 2005 he was Assistant Professor at the University of Trento, while in 2006 he was a Lise Meitner fellow at the Vienna University of Technology. Dr. Aiello's research interests revolve around the notion of space, including modal logics of space, document understanding via spatial interpretation, spatially distributed systems and service-oriented computing.

Hajnal Andréka is Head of the Department of Algebraic Logic at the Rényi Mathematical Research Institute, Budapest. She holds a Mathematics Diploma from the Eötvös University, Budapest, as well as the degree of Doctor of Mathematics from the Hungarian Academy of Sciences. Since 1977, she has been working in the Mathematical Research Institute of the Hungarian Academy of Sciences. She has published approximately 100 research papers and several books. Her main research interests centre around the connections between algebra, logic and geometry, in particular: relativity theory, its logical analysis and foundations, spacetime theories, black holes and cosmology. Dr. Andréka is a member of various editorial boards of international journals and other international academic bodies. She has received numerous awards in Hungary in recognition of her work in mathematics.

Philippe Balbiani is Researcher in the Institut de Recherche en Informatique de Toulouse, where he leads the Logic, Interaction, Language and Computation group. He earned his PhD. in Computer Science from the Université Paul-Sabatier, Toulouse III, in 1991. He has worked principally on logic programming, qualitative reasoning and applied non-classical logics. Dr. Balbiani’s current focus is on mathematical methods, models and architectures for computer security.
Brandon Bennett is Lecturer in the School of Computing at the University of Leeds. He has a BSc. in Physics and Computer Science, an MA. in Philosophy and a PhD. in Computer Science, all from the University of Leeds. His publications cover various subfields of knowledge representation, including spatial reasoning, foundational ontology, representing geographic information and logical modelling of vagueness. His current research focus is on the representation and manipulation of vague geographic objects within GIS applications.

Guram Bezhanishvili is Associate Professor in the Department of Mathematical Sciences at New Mexico State University. He obtained his PhD. in 1998 from the Tokyo Institute of Technology. Before moving to New Mexico State University, he held positions as Assistant Professor at the Tbilisi State University, and Postdoctoral Fellow in the Institute of Logic, Language and Information at the University of Amsterdam. His main interests lie in the use of algebraic and topological methods in non-classical logics.

Isabelle Bloch is Professor in the Signal and Image Processing Department (Département TSI) at the École Nationale Supérieure des Télécommunications. She obtained her PhD. in 1990 and her Habilitation diploma in 1995. Her research interests include 3D image and object processing, 3D and fuzzy mathematical morphology, decision theory, information fusion, fuzzy set theory, belief function theory, structural pattern recognition, spatial reasoning and medical imaging.

Ivo Düntsch is Professor of Computer Science at Brock University. He obtained his PhD. from the Free University of Berlin in 1981. He worked as a lecturer at Bayero University in Kano, Nigeria, and was founding chair of the Mathematics Department at the University of Brunei Darussalam. From 1991 until 1994, he was Deputy Director of the Computer Centre at the University of Osnabrück, and from 1994 until 2002, held a Chair in Computer Science at the University of Ulster. His research interests lie in the area of the logical and algebraic foundations of non–invasive data analysis, in particular, rough set theory and qualitative spatial reasoning.

Floris Geerts is Post-Doctoral Researcher of the Research Foundation of Flanders at Hasselt University and the Transnational University of Limburg, and a Research Associate in the Database Group at the University of Edinburgh. He has a Master’s degree in Mathematics from the University of Ghent and a Doctoral degree in Computer Science from Hasselt University. He spent two years as a Post-Doctoral Researcher at the University of Helsinki. His interests
include the study of constraint databases, query languages in the context of XML and, more recently, data models and query languages for annotated scientific data. He has a keen interest in connections between geometry and logic.

Valentin Goranko is Associate Professor in the School of Mathematics at the University of the Witwatersrand. He obtained his Master’s and PhD. degrees in Mathematics (mathematical logic) from the University of Sofia, and then held academic positions at the University of Sofia, the Rand Afrikaans University and the University of the Witwatersrand. He has over 40 research publications, mainly in theory and applications of modal and temporal logics to computer science and artificial intelligence. His current interests also include logical theories of geometric structures, logics of multi-agent systems and logic computation in finitely presentable infinite structures.

Henk Heijmans is the director of the “Signals and Images” research theme at the CWI in Amsterdam. He received his Master’s degree in Mathematics from the Technical University of Eindhoven and his PhD. from the University of Amsterdam in 1985. His research interests are focused towards mathematical techniques for image and signal processing, with an emphasis on mathematical morphology and wavelet analysis.

Ruaan Kellerman is a PhD. student in the School of Mathematics at the University of the Witwatersrand. He holds an MSc. from the Department of Mathematics at the University of Johannesburg, the thesis topic of which was the logical theories of geometric orthogonality structures. His research currently involves the logical theories of trees.

Roman Kontchakov is Postdoctoral Research Fellow in the School of Computer Science and Information Systems at Birkbeck College, London. He received his MSc. in Applied Mathematics (with Honours) from Moscow State University in 1999 and his PhD. from King’s College, London in 2004. His research interests include first-order, modal and temporal logics, description, metric and spatial logics, combinations of logics, decidability and computational complexity of logics, web services and the Semantic Web.

Philip Kremer is Associate Professor in the Department of Philosophy at the University of Toronto. He has a BSc. in Mathematics from the University of Toronto (1985) and a PhD. in Philosophy from the University of Pittsburgh (1994). He was an Assistant Professor of Philosophy at Stanford University (1994-1996), an Assistant Professor at Yale University (1996-1999) and an
Associate Professor of Philosophy at McMaster University (1999-2003). Since 2003 he has held an undergraduate appointment as an Associate Professor of Philosophy in the Department of Humanities at the University of Toronto at Scarborough, together with a graduate appointment in the Department of Philosophy at the University of Toronto. He has published on dynamic topological logic, on truth and paradox, on propositional quantification, and on relevance logic.

Bart Kuijpers is Associate Professor in the Theoretical Computer Science group at Hasselt University and the Transnational University of Limburg. He has a Master’s degree in Mathematics from the University of Leuven and a Doctoral degree in Computer Science from the University of Antwerp. He was a Researcher at the Universities of Leuven and Antwerp and was a Post-Doctoral Researcher of the Research Foundation of Flanders before becoming Professor of Theoretical Computer Science at Hasselt University. Since 2003, he has also been Visiting Researcher at the University of Buenos Aires. His main research is in query evaluation and the expressive power of database query languages for (possibly infinite) database systems that are described by constraints. His interests also include data models and query languages for spatio-temporal data.

Agi Kurucz is Senior Lecturer in the Department of Computer Science at King’s College, London. She obtained her Diploma in Mathematics from the Eötvös University, Budapest in 1985, and her PhD. in Mathematics from the Hungarian Academy of Sciences in 1998. She lectured in the Department of Symbolic Logic at the Eötvös University, Budapest from 1997 to 1998. From 1998 to 2000, she worked as Research Associate in the Department of Computing at Imperial College, London. She joined King’s College in 2001. Her main research interests are classical predicate logic and modal and algebraic logics.

Judit Madarász is Junior Research Fellow at the Rényi Mathematical Research Institute, Budapest. She received her Master’s degree in Mathematics in 1995 and her PhD. in Mathematics in 2003, both from the Eötvös University, Budapest. She is a co-author of the internet book *Logical Structure of Relativity Theories*, and has published in numerous mathematical journals. Dr. Madarász’ main research interests include relativity theory (both special and general), spacetime, logical foundations of relativity theories and geometry, black holes, cosmology and algebraic logic.

Grigori Mints is Professor of Philosophy and (by courtesy) of Mathematics and Computer Science at Stanford University. He received his MSc. in
Contributing Authors

Mathematics in 1961, his PhD. in 1965 and his ScD. in 1990 (also in Mathematics) from St. Petersburg University. He has held appointments at the Steklov Institute of Mathematics, St. Petersburg, St. Petersburg University, the Institute of Cybernetics, Tallinn and visiting appointments in Amsterdam, Stockholm, Berkeley and Munich. He is the author and editor of 9 books, more than 200 papers and more than 2500 published reviews. His main research interests are logic and the foundations of mathematics. Prof. Mints is an editor of reviews for the *Bulletin of Symbolic Logic* and a member of the editorial boards of the *Journal of Philosophical Logic*, the *Journal of Logic and Computation*, and the *Logic Journal of IGPL*.

Lawrence Moss is the Director of the Indiana University Program in Pure and Applied Logic. He is also Professor of Mathematics and Adjunct Professor of Computer Science, Informatics, Linguistics and Philosophy. His PhD. was in Mathematics from UCLA in 1984. He has also held positions at Stanford University’s Center for the Study of Language and Information, the University of Michigan and the IBM T. J. Watson Research Center. His research areas are mainly in applied logic, and include coalgebra, epistemic logic and interactions of logic and linguistics. Prof. Moss chairs the Steering Committee of the North American Summer School in Logic, Language and Information. He also serves on the editorial boards of a number of journals in his fields and on many conference programme committees.

Bernhard Nebel is Professor in the Department of Computer Science at the Albert-Ludwig University of Freiburg. He received the degree of Dipl.-Inform. from the University of Hamburg, and his PhD. (Dr. rer. nat.) from the University of the Saarland. Between 1982 and 1993 he worked on different AI projects at the University of Hamburg, the Technical University of Berlin, the Information Sciences Institute (University of Southern California), IBM Germany, and the German Research Center for AI (DFKI). From 1993 to 1996 he held an Associate Professor position at the University of Ulm. Since 1996 he has been head of the research group on Foundations of AI at Freiburg. His current research interests are action planning, robotics and temporal and spatial reasoning. Prof. Nebel is an ECAI fellow, and has chaired various international conferences in artificial intelligence.

István Németi is Senior Scientific Advisor at the Rényi Mathematical Research Institute, Budapest. He received his Master’s in Electrodynamics and his PhD. in Mathematics (1978), both from the Eötvös University, Budapest, and his Dr. Sci. from the Hungarian Academy of Sciences in 1987. Since 1974, he has been a researcher at the Mathematical Institute of the Hungarian
Academy of Sciences, and has taught at the Eötvös University. He is the co-author of several scientific books and approximately 130 research papers in leading scientific journals. Prof. Németh’s research interests include logic and the boundaries between logic, geometry and algebra, as well as relativity theory and cosmology.

Rohit Parikh is Distinguished Professor of Computer Science at Brooklyn College, CUNY, also attached to the doctoral programmes of Computer Science, Mathematics and Philosophy at the City University Graduate Center. He received his doctorate from Harvard in 1962 with a dissertation on Transfinite Progressions. He is a three-times winner in the William Lowell Putnam mathematical competition. He has taught at Stanford University, Panjab University, Bristol University, SUNY, Buffalo and NYU. Before coming to City University he was Professor of Mathematics at Boston University for 15 years (the first five as Associate Professor). He has also worked at Bell Labs, IBM, the Tata Institute-Mumbai, Caltech and the ETH-Zurich. Prof. Parikh has published more than a hundred papers, mostly, but not entirely, in logic and its applications. His fields of interest include formal languages, theory of proofs, non-standard analysis, dynamic logic, logic of knowledge, game theory, philosophical logic and social software. He has been editor of the *International Journal for the Foundations of Computer Science* and the *Journal of Philosophical Logic*.

Ian Pratt-Hartmann is Senior Lecturer in the School of Computer Science at the University of Manchester. He read Mathematics and Philosophy at Brasenose College, Oxford, and Philosophy at Princeton University, receiving his PhD. there in 1987. Dr. Pratt-Hartmann has published widely in logic, cognitive science and artificial intelligence. His current research interests include (besides spatial logic) the complexity of decidable fragments of logic and the relationship between natural language and logic. He is a member of the editorial board of the *Journal of Logic, Language and Information*.

Jochen Renz is Fellow of the Research School of Information Sciences and Engineering at the Australian National University. He received his PhD. from the Albert-Ludwig University of Freiburg, and was a Postdoctoral Fellow at the Wallenberg Laboratory for Information Technology and Autonomous Systems at the University of Linköping. After a two-year Marie Curie Postdoctoral Fellowship at the Vienna University of Technology, he moved to National ICT Australia in Sydney. Dr. Renz’ main research interests are in qualitative spatial and temporal representation and reasoning, in particular in the computational properties of reasoning and in efficient reasoning algorithms.
Christian Ronse is Professor of Computer Science at the Université Louis Pasteur, Strasbourg I, and member of the LSIIT (UMR 7005 CNRS-ULP) laboratory. He studied Pure Mathematics at the Free University of Brussels (Licence, 1976) and the University of Oxford (MSc., 1977; PhD., 1979), specialising in group theory. Between 1979 and 1991, he was a member of scientific staff at the Philips Research Laboratory, Brussels, where he conducted research on combinatorics of switching circuits, feedback shift registers, discrete geometry, image processing and mathematical morphology. During the academic year 1991–1992, he worked at the Université Bordeaux I, where he obtained his Habilitation diploma. Since October 1992, he has been Professor at Strasbourg, where he has contributed to the development of a research group on image analysis, and the teaching of image processing to students at various levels. His scientific interests include lattice theory, mathematical morphology, image segmentation and medical imaging. Prof. Ronse is a member of the editorial board of the Journal of Mathematical Imaging and Vision.

Mike Smyth recently retired from a Readership in Theoretical Computer Science at Imperial College, London, and currently holds an honorary position at the University of Birmingham. He studied Mathematics, Philosophy and Computer Science at several UK universities, and was awarded a D. Phil. in Mathematics at the University of Oxford in 1980. Dr. Smyth is probably best known for contributions to domain theory and asymmetric topology. In recent years his interests have shifted towards digital topology and, especially, to the task of developing geometry in such a way as to allow that space (or spacetime) is discrete.

Chris Steinsvold is Adjunct Professor at Brooklyn College, CUNY and the Borough of Manhattan Community College, CUNY. He received his BA in Philosophy from Brooklyn College, CUNY, and is currently working on his dissertation at the CUNY Graduate Center.

Dimiter Vakarelov is Professor of Logic in the Faculty of Mathematics and Informatics at the University of Sofia. He obtained his Master’s degree in Mathematics from the University of Sofia, his PhD. degree in Mathematical Logic from the University of Warsaw and the degree of Doctor of Mathematical Sciences from the University of Sofia. He has more than 70 research publications. His scientific interests are in the field of non-classical logic (mainly modal logic) with applications in computer science and AI.
Johan van Benthem is University Professor of Logic at the University of Amsterdam, Professor of Philosophy at Stanford University, and a member of the informatics section of the Academia Europaea. He studied physics, philosophy, and mathematics at the University of Amsterdam (PhD. 1977), and was the founding director of the Institute for Logic, Language and Computation. He is co-editor of the *Handbook of Logic and Language* (1997) and the *Handbook of Modal Logic* (2006). His interests include modal logic, logics of time and space, dynamic logics of computation and information, and logic and game theory.

Achille Varzi is Professor of Philosophy at Columbia University. A graduate of the University of Trento, he received his PhD. in Philosophy from the University of Toronto. He is author or co-author of over 100 articles and several books in logic, metaphysics, and the philosophy of language. Prof. Varzi is currently an editor of the *Journal of Philosophy*, a subject editor of the *Stanford Encyclopedia of Philosophy*, and an associate editor of *Studia Logica, The Monist, Dialectica* and *Applied Ontology*.

Steve Vickers is Senior Lecturer in the School of Computer Science at the University of Birmingham. His career has combined pure mathematics and computing. After studying Mathematics at Cambridge and Leeds (PhD. in ring theory 1979), he worked on the Sinclair ZX81 and ZX Spectrum microcomputers, subsequently cofounded the company that developed the Jupiter Ace microcomputer. In 1985 he returned to mathematics at the Department of Computing, Imperial College, staying until 1999. He then moved to the Department Pure Mathematics at the Open University, and in 2003 he took up his present post at Birmingham. His main interests lie in the application of logic and category theory to topology.

Julian Webster studied Philosophy at Newcastle University, and obtained his Ph. D. under Mike Smyth at Imperial College, London, on the subject of the digital approximation of topologies and measures. He was subsequently a post-doctoral Research Associate at Imperial College.

Frank Wolter is Professor for Logic and Computation in the Department of Computer Science at the University of Liverpool. He received his PhD. in Mathematics from the Free University of Berlin in 1993, and his Habilitation in Computer Science at Leipzig University in 2000. His main interests are in knowledge representation and reasoning, in particular, description and spatial logics, and in modal and temporal logic. He is co-author and co-editor of
Contributing Authors

various monographs and collections. Prof. Wolter is a Fellow of the British Computer Society.

Michael Zakharyaschev is Professor of Computer Science in the School of Computer Science and Information Systems at Birkbeck College, London. He obtained his Diploma in Mathematics at Moscow State University in 1978, and his PhD. and Habilitation in Mathematics at Novosibirsk State University in 1985 and 1998. He was a Research Associate at the Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, from 1978 to 1999, and lectured in the Faculty of Computational Mathematics and Cybernetics at Moscow State University from 1986 until 1998. He joined Birkbeck College in 2005. His main research interests are modal logic and its applications, description logic, spatial logic, classical predicate and intuitionistic logics and knowledge representation and reasoning. He is a co-author of two major research monographs on modal logic and the mathematical foundations and applications of many-dimensional modal logics.
Second Readers

Marco Aiello, University of Groningen.

Philippe Balbiani, Institut de Recherche en Informatique de Toulouse.

Guram Bezhanishvili, New Mexico State University.

Ivo Düntsch, Brock University.

Jen Davoren, University of Melbourne.

Antony Galton, University of Exeter.

István Németi, Rényi Mathematical Research Institute, Budapest.

Ian Pratt-Hartmann, University of Manchester.

Peter Revesz, University of Nebraska–Lincoln.

Darko Sarenac, Stanford University.

Valentin Shehtman, Moscow State University and King’s College, London.

John Stell, University of Leeds.

Johan van Benthem, University of Amsterdam and Stanford University.

Yde Venema, University of Amsterdam.