DRUG METABOLISM
Drug Metabolism
Current Concepts

Edited by

CORINA IONESCU
“I. Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania

and

MINO R. CAIRA
University of Cape Town, South Africa

Springer
Dedication

To the memory of my parents

To my beloved husband and son, for their continuous support, understanding and encouragement.

Corina Ionescu
CONTENTS

PREFACE ... xi

ACKNOWLEDGEMENTS ... xiii

CHAPTER 1. DRUG METABOLISM IN CONTEXT ... 1

1.1 INTRODUCTION ... 1

1.2 ABSORPTION .. 3

1.2.1 Basic mechanisms of transport through membranes ... 17

1.3 DRUG DISTRIBUTION .. 21

1.3.1 Qualitative aspects .. 21

1.3.2 Kinetic aspects ... 22

1.4 DYNAMICS OF DRUG ACTION ... 25

1.4.1 Drug-receptor interaction ... 25

1.4.2 Mechanisms ... 27

1.4.3 Further aspects ... 28

1.5 DRUG CLEARANCE ... 29

1.5.1 Drug metabolism .. 29

1.5.2 Excretion .. 32

1.6 DYNAMICS OF DRUG CLEARANCE .. 33

1.6.1 Basic pharmacokinetic parameters .. 34

References ... 37

CHAPTER 2. PATHWAYS OF BIOTRANSFORMATION – PHASE I REACTIONS 41

2.1 INTRODUCTION ... 41

2.2 PHASE I AND PHASE II METABOLISM: GENERAL CONSIDERATIONS 42

2.3 OXIDATIONS INVOLVING THE MICROSOMAL MIXED-FUNCTION OXIDASE SYSTEM ... 48

2.3.1 Components of the enzyme system and selected miscellaneous oxidative reactions (mechanisms of action) ... 48

2.3.2 Oxidations at carbon atom centres .. 58

2.3.3 Oxidations at hetero-atoms ... 82

2.4 OXIDATIONS INVOLVING OTHER ENZYMATIC SYSTEMS 94

2.4.1 The monoamine oxidase and other systems ... 94

2.4.2 Other representative examples .. 100

2.5 METABOLIC REACTIONS INVOLVING REDUCTION ... 102
Contents

2.5.1 Components of the enzyme system .. 102
2.5.2 Compounds undergoing reduction .. 103
2.6 HYDROLYSIS .. 107
 2.6.1 Hydrolysis of esters .. 108
 2.6.2 Hydrolysis of amides ... 115
 2.6.3 Hydrolysis of compounds in other classes.. 116
2.7 MISCELLANEOUS PHASE I REACTIONS .. 116
2.8 THE FATE OF PHASE I REACTION PRODUCTS 117
References .. 118

CHAPTER 3. PATHWAYS OF BIOTRANSFORMATION – PHASE II REACTIONS .. 129

3.1 INTRODUCTION ... 129
3.2 GLUCURONIDATION ... 129
 3.2.1 Enzymes involved and general mechanism ... 130
 3.2.2 Glucuronidation at various atomic centres (O, S, N) 134
3.3 ACETYLATION ... 138
 3.3.1 Role of acetyl-coenzyme A .. 138
 3.3.2 Acetylation of amines, sulphonamides, carboxylic acids, alcohols and thiols ... 141
3.4 GLUTATHIONE CONJUGATION .. 144
3.5 OTHER CONJUGATIVE REACTIONS .. 147
3.6 CONCLUDING REMARKS ... 165
References .. 167

CHAPTER 4. ENZYMATIC SYSTEMS INVOLVED IN DRUG BIOTRANSFORMATION .. 171

4.1 INTRODUCTION ... 171
4.2 INTERACTION BETWEEN A DRUG SUBSTRATE AND AN ENZYME 172
4.3 ENZYME SYSTEMS WITH SPECIFIC ROLES ... 189
 4.3.1 Phase I enzyme systems ... 189
 4.3.2 Phase II enzymes ... 202
4.4 FINAL REMARKS .. 204
References .. 204

CHAPTER 5. INDUCTION AND INHIBITION OF DRUG-METABOLISING ENZYMES .. 209

5.1 INTRODUCTION ... 209
5.2 INDUCTION ... 210
 5.2.1 Induction of the Cytochrome P450 system .. 210
 5.2.2 Induction of other enzyme systems ... 213
5.3 INHIBITION ... 214
 5.3.1 Inhibition of the Cytochrome P450 system .. 214
5.4 CONSEQUENCES OF THE ABOVE PHENOMENA 219
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 DIETARY AND NON-DIETARY FACTORS IN ENZYME INDUCTION AND INHIBITION ... 220</td>
</tr>
<tr>
<td>References .. 234</td>
</tr>
<tr>
<td>CHAPTER 6. FACTORS THAT INFLUENCE DRUG BiotRANSFORMATION .. 243</td>
</tr>
<tr>
<td>6.1 INTRODUCTION .. 243</td>
</tr>
<tr>
<td>6.2 INTRINSIC FACTORS ... 244</td>
</tr>
<tr>
<td>6.2.1 Species .. 244</td>
</tr>
<tr>
<td>6.2.2 Sex ... 253</td>
</tr>
<tr>
<td>6.2.3 Age ... 254</td>
</tr>
<tr>
<td>6.2.4 Pathological status .. 258</td>
</tr>
<tr>
<td>6.2.5 Hormonal control of drug metabolism – selected examples .. 261</td>
</tr>
<tr>
<td>6.3 ENVIRONMENTAL FACTORS .. 262</td>
</tr>
<tr>
<td>6.4 FURTHER OBSERVATIONS .. 263</td>
</tr>
<tr>
<td>References .. 264</td>
</tr>
<tr>
<td>CHAPTER 7. IMPACT OF GENE VARIABILITY ON DRUG METABOLISM .. 269</td>
</tr>
<tr>
<td>7.1 INTRODUCTION.. 269</td>
</tr>
<tr>
<td>7.2 BASIC PRINCIPLES OF PHARMACOGENETICS ... 269</td>
</tr>
<tr>
<td>7.2.1 Species-dependent biotransformations and their genetic control .. 274</td>
</tr>
<tr>
<td>7.3 PHARMACO-INFORMATICS .. 287</td>
</tr>
<tr>
<td>7.4 IMPLICATIONS FOR THIRD MILLENNIUM MEDICINE .. 288</td>
</tr>
<tr>
<td>References .. 289</td>
</tr>
<tr>
<td>CHAPTER 8. DRUG INTERACTIONS AND ADVERSE REACTIONS 295</td>
</tr>
<tr>
<td>8.1 INTRODUCTION .. 295</td>
</tr>
<tr>
<td>8.2 DRUG-DRUG INTERACTIONS .. 295</td>
</tr>
<tr>
<td>8.2.1 Definitions, concepts, general aspects .. 295</td>
</tr>
<tr>
<td>8.2.2 Interactions associated with the pharmacodynamic phase .. 297</td>
</tr>
<tr>
<td>8.2.3 Pharmacokinetic interactions: incidence and prediction .. 300</td>
</tr>
<tr>
<td>8.2.4 Interaction during the biotransformation phase .. 305</td>
</tr>
<tr>
<td>8.2.5 Other selected, miscellaneous recent examples .. 308</td>
</tr>
<tr>
<td>8.2.6 Other frequent and relevant interactions ... 314</td>
</tr>
<tr>
<td>8.3 INTERACTIONS BETWEEN DRUGS AND OTHER ENTITIES ... 325</td>
</tr>
<tr>
<td>8.3.1 Drug-food interactions .. 325</td>
</tr>
<tr>
<td>8.3.2 Interactions with alcohol .. 327</td>
</tr>
<tr>
<td>8.3.3 Influence of tobacco smoke .. 328</td>
</tr>
<tr>
<td>8.4 ADVERSE REACTIONS .. 329</td>
</tr>
<tr>
<td>8.4.1 Classification criteria .. 329</td>
</tr>
<tr>
<td>8.4.2 Selected examples .. 333</td>
</tr>
<tr>
<td>8.5 SUMMARY ... 348</td>
</tr>
<tr>
<td>CONCLUDING REMARKS .. 351</td>
</tr>
<tr>
<td>References .. 351</td>
</tr>
</tbody>
</table>
PREFACE

This book is intended to serve a wide audience, including students of chemistry, pharmacy, pharmacology, medicine, biochemistry and related fields, as well as health professionals and medicinal chemists. Our aim in preparing it has been threefold: to introduce essential concepts in drug metabolism (drug biotransformation), to illustrate the wide-ranging medical implications of such biological processes and to provide the reader with a perspective on current research in this area. The general intention is to demonstrate that the metabolism of a drug is a primary concern throughout its lifetime, from its inception (chemical design and optimisation) to its final clinical use, and that for any given drug, the multiple factors influencing its metabolism necessitate on-going studies of its biotransformation.

In the first chapter, the principles underlying drug absorption, distribution, metabolism and elimination are described, with drug metabolism highlighted within the context of these fundamental processes. Chapters 2 and 3 deal with the chemistry of drug biotransformation, describing both Phase I (‘asynthetic’) and Phase II (‘synthetic’) biotransformations and the enzymes that mediate them. Further details of the structural features, mechanisms of action in biotransformation, and regulation of enzymes appear in Chapter 4. Enzyme induction and inhibition, with special reference to the cytochrome P450 system, are examined in Chapter 5. This is followed, in Chapter 6, by a discussion of the influence of sex, age, hormonal status and disease state on drug biotransformation. An introduction to the relatively new discipline of pharmacogenetics, probing the effects of gene variability on drug biotransformation, is the subject of Chapter 7. This includes commentary on the implications of pharmacogenetics for the future dispensing of medicines. Chapter 8 treats two special topics that have significant clinical implications, namely drug-drug interactions and adverse reactions. Included in this chapter is an extensive tabulation of drug-drug interactions and their biological consequences. Finally, Chapter 9 attempts to demonstrate how considerations based on a sound understanding of the principles of drug metabolism (described in the earlier chapters) are incorporated into the drug design process in order to maximise the therapeutic efficacy of candidate drugs. This is of paramount interest to the medicinal chemist whose aim is to design safe and effective drugs with predictable and controllable metabolism.

The text is supported extensively by pertinent examples to illustrate the principles discussed and a special effort has been made to include frequent literature references to recent studies and reviews in order to justify the term ‘current’ in the title of this work.

Corina Ionescu Mino Caira
ACKNOWLEDGEMENTS

Prof. dr. Marius Bojiță, Rector of “I.Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, for facilitating this collaboration, his understanding and support;

Prof. dr. Felicia Loghin, Dean of the Faculty of Pharmacy, for her continuous support and encouragement;

Prof. dr. Jacques Marchand (Univ. of Rouen, France) and Prof. George C Rodgers Jr. (Univ. of Louisville, Kentucky, USA) for their encouragement and recommendations;

Prof. dr. Dan Florin Irimie, the first reader of the Romanian version of my book, for his helpful comments.

MRC expresses his gratitude to Fiona, Renata and Ariella for their infinite patience and unflagging loyalty.

Thanks are due to the University of Cape Town and the NRF (Pretoria) for supporting drug-related research projects.

We are indebted to Richard A Paselk, Abby Parrill and numerous other sources for granting us permission to reproduce numerous figures.

A special token of thanks is due to our colleagues who have assisted with technical aspects of the production of this work. They include Senior Lecturer Dr. Adrian Florea, from the Department of Cellular Biology, “I.Hațieganu” University of Medicine and Pharmacy, as well as Mr Vincent Smith and Mr Paul Dempers (both of the Department of Chemistry, University of Cape Town).