ISOTOPES IN THE WATER CYCLE: PAST, PRESENT AND FUTURE OF A DEVELOPING SCIENCE
Isotopes in the Water Cycle
Past, Present and Future of a Developing Science

Edited by

PRADEEP K. AGGARWAL
International Atomic Energy Agency / IAEA, Vienna, Austria

JOEL R. GAT
Weizmann Institute of Science, Rehovot, Israel

and

KLAUS F.O. FROEHLICH
Formerly at IAEA, Vienna, Austria
PREFACE

Improved understanding of the Earth’s water cycle is a key element of global efforts to develop policies and practices for the sustainable management of water resources. Isotope and nuclear techniques have provided unmatched insights into the processes governing the water cycle and its variability under past and present climates. The International Atomic Energy Agency (IAEA) convened the first symposium on isotope hydrology in 1963. As isotope hydrology developed as an independent discipline, the IAEA symposia, convened every four years, provided a vehicle to review the state of the science and discuss future developments. Proceedings of these symposia contain classical papers that still form the basis of a number of applications in hydrology and inspire current research.

On the occasion of the 40th anniversary of the first IAEA symposium on isotope hydrology convened in 1963, it was decided to publish a monograph with an historical perspective and new developments in isotope techniques and their applications in hydrology. The various contributions represent reviews of the given subjects, and they contain comprehensive lists of references for further studies by interested readers.

The monograph begins with a history of isotopes in hydrology, in particular the stable oxygen and hydrogen isotopes, and of the role of the Isotope Hydrology Section of the IAEA in promoting this science. The first part of the monograph presents specific isotope and nuclear techniques that found wide applications in hydrology and related fields, complemented conventional hydrologic techniques, and, in some cases, became indispensable in special disciplines such as palaeohydrology and palaeoclimatology. First, historical developments and achievements in the use of artificial tracers for determining hydrologic parameters are reviewed (Moser and Rauert). In the 1960s, this technique was at the forefront of nuclear hydrology, but it has now largely been abandoned because the related health and safety concerns outweigh the advantages. A review of the use of cosmogenic isotopes in hydrology is presented by Lal, together with a detailed discussion of opportunities arising from the application of silicon isotopes. These are followed by applications of rare gases (Loosli), uranium and thorium series radionuclides (Kaufman), nitrogen and sulphur isotopes (Mayer), tritium (Michel) and stable oxygen and hydrogen isotopes (Gourcy, Groening and Aggarwal). Kerstel and Meijer present a detailed discussion of the latest developments in isotope analysis by optical techniques.

The second part of the monograph provides a number of contributions on applications of isotopes to investigate hydrological systems and processes under past and present climatic conditions. Applications for understanding the origin and movement of atmospheric moisture are discussed by Rozanski. Froehlich, Gonfiantini and Rozanski discuss the use of isotopes for understanding lake dynamics and water balance. Vitvar, Aggarwal and McDonnell present developments in the application of isotopes for investigating and modelling rainfall–runoff processes, both in small and large catchments. These are followed by discussions of isotope applications in groundwater (Edmunds), continental ice sheets (Thompson and Davis), geothermal systems (Kharaka and Mariner), saline waters (Horita), palaeolimnology (Gasse), and groundwater archives of palaeoclimate
(Edmunds). Developments in dating of groundwater are presented by Plummer (young waters) and Geyh (old groundwater). The historical evolution of the classical concepts of stable isotope hydrology, such as Rayleigh distillation and the global meteoric water line of Craig, is described by Gat. Finally, a contribution by Hoffman and others provides an analysis of stable isotopes in precipitation with the help of a global circulation model.

The Appendix includes a list of seminal papers in isotope hydrology and references to landmark developments in this field at the IAEA. The list of technical contributions presented at the first IAEA symposium in 1963 is also included.

Some topics notably are not discussed in detail in this monograph as they have been covered in recent reviews. These topics include stable carbon isotopes, biosphere-hydrosphere interactions, paleoclimate studies based on isotopes in plants and tree-rings, oceanic systems, and Arctic and Antarctic ice sheets.

We hope that this monograph will provide the detailed knowledge on isotope hydrology that is required by graduate students and specialists and that it will further strengthen the integration of isotope hydrology in science and applications related to the hydrologic cycle, climate and environment.

The editors are pleased to acknowledge all the contributions provided for this monograph, including those who have worked at the forefront of developments in isotope hydrology. In addition, we thank Mr. Roger Peniston-Bird for assistance with language editing and word processing, and Ms. Ormanette Azucena for secretarial support.
Aggarwal, P.K.
Isotope Hydrology Section
Division of Physical and Chemical Sciences
International Atomic Energy Agency
Vienna, Austria
E-mail: P.Aggarwal@iaea.org

Cuntz, M.
Institut Pierre Simon Laplace (IPSL), Paris &
Laboratoire des Sciences du Climat et de l’Environnement (LSCE)
Orme des Merisiers, Gif sur Yvette
France
E-mail: cuntz@uta.edu

Davis, M.E.
Department of Geological Sciences
The Ohio State University, Columbus
Ohio, U.S.A.
E-mail: davis.3@osu.edu

Edmunds, W.M.
Oxford Centre for Water Research
School of Geography and Environment
Oxford, United Kingdom
E-mail: wme@btopenworld.com

Froehlich, K.F.O.
formerly at IAEA
Vienna, Austria
E-mail: k.froehlich@aon.at

Gasse, F.
CEREGE, CNRS-Université Aix-Marseille 3
Aix-en-Provence, France
E-mail: gasse@cerege.fr

J.R. Gat
Department of Environmental Science and Energy Research
The Weizmann Institute of Science
Rehovot, Israel
E-mail: cigatf@wisemail.weizmann.ac.il
LIST OF AUTHORS

Geyh, M.A.
Faculty of Geosciences
University of Marburg
Winsen/Aller, Germany
E-mail: Mebus.Geyh@t-online.de

Gonfiantini, R.
Istituto di Geoscienze e Georisorse del CNR
Pisa, Italy
E-mail: r.gonfiantini@iggi.cnr.it

Gourcy, L.L.
Isotope Hydrology Section
Division of Physical and Chemical Sciences
International Atomic Energy Agency
Vienna, Austria
E-mail: L.Gourcy@iaea.org

Groening, M.
Isotope Hydrology Section
Division of Physical and Chemical Sciences
International Atomic Energy Agency
Vienna, Austria
E-mail: M.Groening@iaea.org

Hoffmann, G.
Institut Pierre Simon Laplace (IPSL), Paris &
Laboratoire des Sciences du Climat et de l’Environnement (LSCE)
Orme des Merisiers, Gif sur Yvette
France
E-mail: hoffmann@lsce.saclay.cea.fr

Horita, J.
Chemical Sciences Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee
U.S.A.
horitaj@ornl.gov

Jouzel, J.
Institut Pierre Simon Laplace (IPSL), Paris &
Laboratoire des Sciences du Climat et de l’Environnement (LSCE)
Orme des Merisiers, Gif sur Yvette
France
E-mail: jouzel@lsce.saclay.cea.fr
LIST OF AUTHORS

Kaufman, A.
Department of Environmental Sciences and Energy Research
Weizmann Institute of Science
Rehovot, Israel
E-mail: Cikaufmn@wisemail.weizmann.ac.il

Kerstel, E.R.Th.
Centre for Isotope Research
University of Groningen
The Netherlands
E-mail: kerstel@phys.rug.nl

Kharaka, Y.K.
U.S. Geological Survey
Menlo Park, California
USA
E-mail: ykharaka@usgs.gov

Lal, D.
Geosciences Research Division
Scripps Institution of Oceanography
University of California
USA
E-mail: dlal@ucsd.edu

Loosli, H.H.
Physics Institute
University of Bern
Bern, Switzerland
E-mail: loosli@climate.unibe.ch

Mariner, R.H.
U.S. Geological Survey
Menlo Park, California
USA
E-mail: rmariner@usgs.gov

Mayer, B.
Department of Geology and Geophysics
University of Calgary, Calgary
Alberta, Canada
E-mail: bmayer@ucalgary.ca
LIST OF AUTHORS

McDonnell, J.J.
Dept. of Forest Engineering
Oregon State University
Corvallis, Oregon
USA
E-mail: jeff.mcdonnell@orst.edu

Meijer, H.A.J.
Centre for Isotope Research
University of Groningen
The Netherlands
E-mail: meijer@phys.rug.nl

Michel, R.L.
U.S. Geological Survey
Menlo Park, California
USA
E-mail: rlmichel@usgs.gov

Moser, H.
Munich, Germany
E-mail: h.-h.moser@t-online.de

Plummer, L.N.
U.S. Geological Survey
Reston, Virginia
USA
E-mail: nplummer@usgs.gov

Purtschert, R.
Physics Institute
University of Bern
Bern, Switzerland
E-mail: purtschert@climate.unibe.ch

Rauert, W.
München, Germany
E-mail: wrauert@yahoo.de
Rozanski, K.
AGH – University of Science and Technology
Faculty of Physics and Applied Computer Science
Cracow, Poland
E-mail: rozanski@novell.ftj.agh.edu.pl

Thompson, L.G.
Byrd Polar Research Center
Department of Geological Sciences
Ohio State University
Columbus, Ohio, USA
E-mail: thompson.3@osu.edu

Vitvar, T.
Isotope Hydrology Section
Division of Physical and Chemical Sciences
International Atomic Energy Agency
Vienna, Austria
E-mail: T.Vitvar@iaea.org

Werner, M.
Max-Planck-Institut für Biogeochemie,
Jena, Germany
E-mail: martin.werner@bgc-jena.mpg.de
CONTENTS

Introduction ... 1

1. ISOTOPE HYDROLOGY: A HISTORICAL PERSPECTIVE
FROM THE IAEA ... 3
 P.K. Aggarwal, K. Froehlich, R. Gonfiantini, J.R. Gat

 Isotopic and Nuclear Methodologies .. 9

2. ISOTOPIC TRACERS FOR OBTAINING HYDROLOGIC PARAMETERS 11
 H. Moser, W. Rauert

3. HYDROLOGIC PROCESS STUDIES USING RADIONUCLIDES PRODUCED BY COSMIC RAYS .. 25
 D. Lal

4. STABLE OXYGEN AND HYDROGEN ISOTOPES .. 39
 L.L. Gourcy, M. Groening, P.K. Aggarwal

5. TRITIUM IN THE HYDROLOGIC CYCLE ... 53
 R.L. Michel

6. ASSESSING SOURCES AND TRANSFORMATIONS OF SULPHATE AND NITRATE IN THE HYDROSPHERE USING ISOTOPE TECHNIQUES .. 67
 B. Mayer

7. RARE GASES ... 91
 H.H. Loosli, R. Purtschert

8. U AND Th SERIES NUCLIDES IN NATURAL WATERS 97
 A. Kaufman

9. OPTICAL ISOTOPE RATIO MEASUREMENTS IN HYDROLOGY 109
Hydrologic Processes and Systems ... 125

10. SOME CLASSICAL CONCEPTS OF ISOTOPE HYDROLOGY 127
 J.R. Gat

11. ISOTOPES IN LAKE STUDIES: A HISTORICAL PERSPECTIVE 139
 K. Froehlich, R. Gonfiantini, K. Rozanski

12. A REVIEW OF ISOTOPE APPLICATIONS
 IN CATCHMENT HYDROLOGY ... 151
 T. Vitvar, P.K. Aggarwal, J.J. McDonnell

13. CONTRIBUTION OF ISOTOPIC AND NUCLEAR
 TRACERS TO STUDY OF GROUNDWATERS ... 171
 W.M. Edmunds

14. DATING OF YOUNG GROUNDWATER ... 193
 L.N. Plummer

15. DATING OF OLD GROUNDWATER –
 HISTORY, POTENTIAL, LIMITS AND FUTURE ... 221
 M.A. Geyh

16. GEOTHERMAL SYSTEMS .. 243
 Y.K. Kharaka, R.H. Mariner

17. SALINE WATERS ... 271
 J. Horita

Hydroclimatic Processes and Systems ... 289

18. ISOTOPES IN ATMOSPHERIC MOISTURE ... 291
 K. Rozanski

19. HOW MUCH CLIMATIC INFORMATION
 DO WATER ISOTOPES CONTAIN? ... 303
 G. Hoffmann, M. Cuntz, J. Jouzel, M. Werner

20. STABLE ISOTOPES THROUGH THE HOLOCENE AS RECORDED
 IN LOW-LATITUDE, HIGH-ALTITUDE ICE CORES 321
 L.G. Thompson, M.E. Davis

21. GROUNDWATER AS AN ARCHIVE OF CLIMATIC
 AND ENVIRONMENTAL CHANGE .. 341
 W.M. Edmunds
CONTENTS

22. ISOTOPIC PALAEOLIMNOLOGY ..353
 F. Gasse

Appendices..359

A. LIST OF SEMINAL PAPERS ON ISOTOPE HYDROLOGY
 (THE ISOTOPES OF HYDROGEN AND OXYGEN)361

B. LIST OF PAPERS PRESENTED AT THE 1st IAEA SYMPOSIUM ON
 ISOTOPE HYDROLOGY (TOKYO, 1963) ..369

C. EXCERPTS FROM REPORT OF 1st IAEA PANEL ON
 THE APPLICATION OF ISOTOPE TECHNIQUES IN HYDROLOGY........373
INTRODUCTION