Animal Models in Cardiovascular Research
David R. Gross

Animal Models in Cardiovascular Research

Third Edition

Springer
To Drs. Theodore S. Gross and Jeffrey M. Gross who continue the family obsession for the acquisition and dissemination of new knowledge.
This new edition of *Animal Models in Cardiovascular Research* describes historical and recent advances in our understanding of the cardiovascular system from studies conducted in a variety of animal models. Since the last edition, we have witnessed an explosion in the use of both congenic and transgenic animals. The use of specific knock-in and knock-out transgenic models has resulted in an avalanche of genetic, molecular, and protein-based information that, potentially, could result in an amazing new array of treatment and management options. However, the results of these studies also introduce a sometime bewildering array of redundant, overlapping, and competing molecular pathways involved in both physiological and pathological responses.

This third edition is designed to provide a better basis for understanding and using animal models in the current climate of background knowledge and information. It is significantly different than the previous two editions. Chapter 1 is updated from the previous editions addressing general principles of animal selection. It also provides expanded tables of normal physiological values for easy reference. Chapter 2 covers preoperative care, preanesthesia, and chemical restraint, and includes a significantly expanded section on pain recognition and analgesia particularly in rodents. Chapter 3 provides a summary of normal cardiovascular parameters obtained from intact, awake animals. The data have been rearranged in outline rather than the previous tabular form hopefully resulting in easier reference.

Chapter 4 addresses the techniques, problems, and pitfalls of measuring cardiac function in animals. There is an emphasis on the proper use of these measurements to develop new treatment and management strategies as well as using them to study mechanisms of disease. Chapter 5 emphasizes the techniques, problems, and pitfalls involved in the measurement of arterial function and ventricular/arterial coupling dynamics. Again the emphasis is on the use of these parameters to develop new treatment and management strategies and for studying the mechanisms of disease. Chapter 6 is an all new chapter dealing specifically with the problems and pitfalls inherent in using isolated heart preparations. The need for this chapter became apparent because so much information was published using obviously non-physiologic preparations. The use of both pumping and nonpumping preparations is described along with techniques necessary for using hearts from larger species where oxygen-carrying capacity of the perfusate is critical. The importance of hypoxia and anoxia in the interpretation of results is discussed.
Chapter 7 focuses on the cardiovascular effects of the postoperative analgesic drugs commonly used today and how to avoid potential problems resulting from these effects when reporting experimental data. These data are also presented in outline form rather than the tabular format used in the two previous editions. Chapter 8 addresses the use of naturally occurring animal models of valvular and infectious cardiovascular disease. The information presented has been updated and expanded from the second edition. Chapter 9 examines iatrogenic models of ischemic heart disease.

Chapter 10 is new. It provides a review of iatrogenic, transgenic, and naturally occurring animal models of cardiomyopathy and heart failure. Chapter 11 includes new, updated, and revised information reviewing iatrogenic and transgenic models of hypertension. Chapter 12 contains new and updated information on iatrogenic and transgenic models of atherosclerotic disease.

Chapter 13 is completely a new material dealing with animal models for the study of neurohumeral and central nervous system control of the cardiovascular system. Chapter 14 is also new. It provides examples of cardiovascular studies involving the use of specific transgenic models that are not normally associated with the cardiovascular system, such as estrogen receptor knockouts, to study cardiovascular function.

Urbana, IL

David R. Gross
Acknowledgements

Rosalie Gross has supported, encouraged, loved and endured since April of 1960. Our journey together continues.

Special thanks are owed to Professor Gary A. Iwamoto. Chapter 13 benefited significantly from his critical review and insightful suggestions.
Introduction

Animal rights activist organizations lobbied for and obtained significantly more restrictive regulations from governments worldwide since the last edition of this text. The agenda of most animal rights groups is to stop our use of animals. If biomedical science is to advance, we must understand the complexities and inter-relationships of the various physiological control mechanisms that regulate living whole animal systems. It is more essential than ever that we persevere.

“Old guard” physiologists, pharmacologists, and toxicologists, familiar with whole animal homeostatic control mechanisms, believe some “new breed” scientists working at the molecular level are so focused in their particular area of expertise they have little appreciation for the potential effects of the iatrogenic changes they induce on the whole animal. Frequently lost in the landslide of new information is an understanding of how any particular gene, molecule, and/or protein fits into our broad understanding of the basic physiology of the animal species and how that relates to the human species. A few scientists even seem unaware that most, if not all, physiological systems have multiple and redundant control mechanisms that adjust any particular organ or system behavior to the homeostatic requirements of the whole animal.

Physiological systems may have several stimulatory and inhibitory controls that operate at some constant level of activity. The same physiological response is therefore possible by increasing stimulation or decreasing inhibition or vice versa. At the molecular and cellular level, the more information we obtain the more apparent it becomes that multiple pathways are present to achieve the same response. When cells, or organ systems, are perturbed by interrupting, knocking out, or upregulating a specific molecular or genetic pathway, redundant pathway(s) are, appropriately, up- or downregulated in response to maintain homeostasis.

A significant number of the animal models described in this text have been derived using either congenic or transgenic techniques. It is therefore appropriate to provide an abbreviated description of how these animals are produced.

Congenic strains of animals are developed by mating two inbred strains and then backcrossing the descendants for at least five and up to ten or more generations with one of the original strains. At each step, selections are made for the specific phenotype or genotype of interest. This allows the phenotype or genotype to pass from the donor strain onto an otherwise uniform recipient strain. The congenic
strain can then be compared to the pure recipient strain to determine phenotypic or genetic differences. Producing large numbers of eggs via superovulation in females and then using microsatellite or nucleotide polymorphism markers to track the genes of interest can speed up specific congenic strain development.

Transgenic animals are generally created using one of two different protocols. The first uses recombinant DNA methodology to insert (knock in) or remove (knock out) a specific gene or protein from the genome. The DNA used usually includes a structural gene, as well as other sequences, that enables it to be incorporated into the DNA of the host and to be expressed by the particular cells of interest. The most common method of producing a transgenic animal model involves harvesting embryonic stem cells from the inner cell mass of blastocysts. When these cells are grown in culture, they retain their ability to produce all the cells of the mature animal. The cultured cells are then exposed to the DNA of interest and those cells that successfully incorporate the DNA are identified and separated. These isolated cells are then injected into the inner cell mass of blastocysts. The resulting embryos are transplanted into a pseudopregnant dam. It is uncommon, at least in mice, for more than a third of the embryos thus transplanted to develop into healthy offspring. The next step is to test all the offspring to identify those with the desired gene. Usually, no more than 10–20% will have that gene and they will be heterozygous for it. The next step is to mate two heterozygous mice and screen their offspring for the one in four that will be homozygous for the transgene of interest. Mating homozygous animals produces the transgenic strain.

A second method of producing transgenic animals involves the same preparation of the DNA of interest and then harvesting freshly fertilized eggs before the sperm head has become a pronucleus. The male pronucleus is injected with the DNA of interest, and when the pronuclei have fused to form diploid zygote nuclei, the zygote is allowed to divide by mitosis to form a two-cell embryo. The two-cell embryo is then implanted in the pseudopregnant foster mother and the same steps used in the embryonic stem cell method are followed.
Contents

1 General Principles of Animal Selection and Normal Physiological Values ... 1
 Special Requirement Considerations .. 2
 Normal Physiological Data .. 3

2 Preanesthesia, Anesthesia, Chemical Restraint, and the Recognition and Treatment of Pain and Distress 17
 General Principles of Pain Recognition in Animals 17
 The Use of Anti-Cholinergic Drugs for Preanesthesia 21
 General Comments on Preanesthetic Agents 22
 Preanesthesia and Anesthesia in Rats and Mice 22
 Chemical Restraint (Sedation) in Rats and Mice 23
 Pain and Distress Recognition in Rats and Mice 23
 Treatment of Pain in Rats and Mice .. 26
 Local Anesthetic Agents ... 26
 Nonsteroidal Anti-Inflammatory Drugs 26
 Narcotics ... 26
 Preanesthesia and Anesthesia in Rabbits ... 28
 Chemical Restraint (Sedation) in Rabbits ... 29
 Pain Recognition in Rabbits .. 29
 Treatment of Pain in Rabbits ... 29
 Local Anesthetics .. 29
 Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) 30
 Narcotics .. 30
 Alpha–Agonists ... 30
 Preanesthesia and Anesthesia in Dogs .. 30
 Chemical Restraint (Sedation) in Dogs ... 32
 Pain Recognition in Dogs ... 33
 Treatment of Pain in Dogs .. 34
 Local Anesthetics .. 34
 NSAIDs .. 34
 Narcotics .. 34
 Alpha-Agonists ... 35
3 Normal Cardiac Function Parameters

Preanesthesia and Anesthesia in Cats ... 35
Chemical Restraint (Sedation) in Cats .. 36
Pain Recognition in Cats .. 37
Treatment of Pain in Cats ... 37
 Local Anesthetics .. 37
 NSAIDs ... 37
 Narcotics .. 37
 Alpha-Agonists .. 38
Preanesthesia and Anesthesia in Guinea Pigs ... 38
Chemical Restraint (Sedation) in Guinea Pigs ... 38
Pain Recognition in Guinea Pigs ... 38
Treatment of Pain in Guinea Pigs ... 39
 Local Anesthetic Agents .. 39
 NSAIDs ... 39
 Narcotics .. 39
 Alpha-Agonists .. 39
Preanesthesia and Anesthesia in Pigs .. 39
Chemical Restraint (Sedation) in Pigs .. 41
Pain Recognition in Pigs .. 41
Treatment of Pain in Pigs ... 41
 Local Anesthetic Agents .. 41
 NSAIDs ... 42
 Narcotics .. 42
 Alpha-Agonists .. 42
Preanesthesia and Anesthesia in Calves, Sheep, and Goats 42
Chemical Restraint (Sedation) in Small Ruminants 43
Recognition of Pain in Small Ruminants ... 43
Treatment of Pain in Small Ruminants ... 44
 Local Anesthetic Agents .. 44
 NSAIDs ... 44
 Narcotics .. 44
 Alpha-Agonists .. 44
Preanesthesia and Anesthesia in Rhesus Monkeys 45
Chemical Restraint (Sedation) in Rhesus Monkeys 45
Pain Recognition in Rhesus Monkeys .. 45
Treatment of Pain in Rhesus Monkeys ... 46
 Local Anesthetics .. 46
 NSAIDs ... 46
 Narcotics .. 46
Conclusions .. 47

3 Normal Cardiac Function Parameters

3 Normal Cardiac Function Parameters
4 Measuring Cardiac Function

The Pressure–Volume Relationship... 67
Another Measure of Ventricular Elasticity .. 68
Measurement of Electrical Activity ... 68
Measurement of Pressure ... 69
Echocardiography... 70
 History ... 70
 Physics of Echo Technology .. 72
Doppler Flow Velocity and Tissue Doppler Imaging 74
 History ... 74
 Physics of Doppler Technology ... 75
Tissue Doppler Imaging... 76
Examples of Ultrasound Data Reported Using
<20-MHz Transducers... 77
Examples of Ultrasound Data Reported Using 20-MHz
(or Greater) Transducers... 78
Summary of Information Needed to Ascertain
the Reliability of Ultrasound Data.. 80
Techniques for Measuring Ventricular Volumes .. 80
 Radiographic .. 80
 Echocardiography and Tissue Doppler Imaging 81
 Sonomicrometry .. 81
 Radionuclide Ventriculography .. 81
 Magnetic Resonance Imaging and Computer-Assisted
 Tomography Scan ... 82
 Conductance-Derived Volume Measurements .. 82
Other Measures of Myocardial Physical Properties 84
 Myocardial Resistivity ... 85
 Tissue Characterization .. 85
Measuring Diastolic Dysfunction ... 86

5 Measuring Vascular Function and Ventricular/
Arterial Coupling Dynamics ... 93

History .. 93
Quantification of Arterial Compliance .. 94
Force-Displacement Measurements ... 95
Pulse Wave Velocity .. 97
Modeling Techniques for Estimating Vascular Mechanical Behavior 99
Ventricular/Vascular Coupling ... 101
 Ventricular/Vascular Coupling Determined Using
 the Input Impedance ... 101
 Ventricular/Vascular Coupling Determined Using
 the Ratio of Ventricular End-Systolic Pressure
 and Stroke Volume (P_{es}/SV) Designated E_a 102
Diastolic Ventricular/Vascular Coupling ... 104
MRI Imaging for Detection of Ventricular/Vascular Coupling 104
Tissue Doppler Imaging and Elasticity Imaging .. 104

6 Isolated Heart Preparations, Problems, and Pitfalls 109

Development of the Isolated Heart Preparation 109
Retrograde Perfusion Preparations (The Langendorff Preparation) 112
Choosing between the Pressure-Regulated or Flow-Regulated
Langendorff-Type Preparation ... 114
The Isolated, Working, In Situ Heart-Lung Preparation 114
The Isolated Working Left Heart Preparation .. 114
The Langendorff-Type Perfused Working Left Heart Preparation 115
The Biventricular Isolated Working Heart Preparation 117
The Biventricular, Retrograde-Perfused, Working Heart Preparation 119
Perfusion Solutions ... 120
Support Animals .. 122
Washed Red Blood Cell Addition to the Perfusate 122
Problems and Pitfalls .. 123
 Exclusion Criteria ... 123
 Problems Common to Crystalloid Perfusion .. 124
 Contamination ... 124
 Temperature ... 125
 Metabolic “Poisoning” ... 125
 Pacing vs. Spontaneously Beating Preparations 125
 Frequency Response Testing of Ventricular Pressure
 Recording Systems .. 126
 Heterotopic Transplants ... 126

7 Cardiovascular Effects of Anesthetics, Sedatives, Postoperative Analgesic Agents, and Other Pharmaceuticals 131

 Barbiturates ... 131
 Propofol .. 132
 α-Chloralose .. 133
 Urethane .. 134
 α-Chloralose + Urethane .. 134
 Steroid Anesthetic Agents .. 134
 Inhalation Anesthetic Agents ... 135
 General ... 135
 Halothane .. 136
 Isoflurane ... 137
 Desflurane .. 138
 Sevoflurane .. 139
 Ether .. 140
 Nitrous Oxide .. 140
Contents

Trichloroethylene ... 140
The Opioids ... 141
 Morphine .. 141
 Meperidine (Demerol) .. 144
 Methadone .. 144
 Levomethadone ... 145
 Pentazocine .. 145
 Fentanyl .. 145
 Butorphanol .. 147
 Buprenorphine ... 147
 Oxymorphone ... 148
 Naloxone ... 148
 Other Synthetic Opioids ... 149
Dissociative Anesthetic Agents ... 150
 Ketamine .. 150
 Tiletamaine .. 151
Imidazole and Other Hypnotic, Amnesiac, Anxiolytic, or Antipsychotic Compounds ... 152
 Etomidate .. 152
 Metomidate .. 153
 Benzodiazepines .. 153
 Rilmenidene .. 155
 α-2 Adrenergic Receptor Agonists ... 156
 Medetomidine and Dexmedetomidine 156
 Clonidine .. 157
 β-2-Adrenergic Receptor Agonists ... 157
 Clenbuterol ... 157
 KUR-1246 .. 158
 Fenoterol .. 158
 Rauwolfia Derivatives .. 158
 Reserpine .. 158
 Phenothiazine Derivatives ... 160
 Chlorpromazine and Promazine .. 160
 Acetylpmazine (Acepromazine) .. 162
 Other Phenothiazine Derivatives .. 163
 Triflupromazine, Levomepromazine, Prochlorperazine (thioridazine), Cyamemazine .. 163
 Butyrophenones .. 164
 Droperidol .. 164
 Haloperidol .. 165
 Azerperone .. 166
 Other Antipsychotic/Anxiolytic/Antidepressant (Tranquilizer) Drugs .. 166
 Tricyclic Antidepressants ... 167
 Selective Serotonin Uptake Inhibitors 167
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical Antipsychotics</td>
<td>169</td>
</tr>
<tr>
<td>Sertindole</td>
<td>169</td>
</tr>
<tr>
<td>Pimozide</td>
<td>169</td>
</tr>
<tr>
<td>Clozapine</td>
<td>169</td>
</tr>
<tr>
<td>Risperidone</td>
<td>170</td>
</tr>
<tr>
<td>Amisulpride</td>
<td>170</td>
</tr>
<tr>
<td>Minaprine</td>
<td>171</td>
</tr>
<tr>
<td>Atypical Antipsychotics</td>
<td>171</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>171</td>
</tr>
<tr>
<td>Fezolamine</td>
<td>171</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>171</td>
</tr>
<tr>
<td>Lortalamine</td>
<td>171</td>
</tr>
<tr>
<td>Xylazine</td>
<td>172</td>
</tr>
<tr>
<td>Drugs in Combination Providing Neurolept Analgesia/Anesthesia</td>
<td>172</td>
</tr>
<tr>
<td>Metomidate + Azaperone</td>
<td>172</td>
</tr>
<tr>
<td>Medetomidine + Butorphanol</td>
<td>173</td>
</tr>
<tr>
<td>Medetomidine + Butorphanol + Midazolam</td>
<td>173</td>
</tr>
<tr>
<td>Medetomidine + Buprenorphine + Ketamine</td>
<td>173</td>
</tr>
<tr>
<td>Medetomidine + Midazolam</td>
<td>174</td>
</tr>
<tr>
<td>Medetomidine + Hydromorphone</td>
<td>174</td>
</tr>
<tr>
<td>Dexmedetomidine + Butorphanol</td>
<td>174</td>
</tr>
<tr>
<td>Medetomidine + Ketamine</td>
<td>174</td>
</tr>
<tr>
<td>Medetomidine + Ketamine + Midazolam</td>
<td>175</td>
</tr>
<tr>
<td>Dexmedetomidine + Ketamine</td>
<td>175</td>
</tr>
<tr>
<td>Ketamine in Combination with Tranquilizers</td>
<td>175</td>
</tr>
<tr>
<td>Ketamine + Acepromazine</td>
<td>175</td>
</tr>
<tr>
<td>Ketamine + Xylazine</td>
<td>176</td>
</tr>
<tr>
<td>Ketamine + Xylazine + Guaiifenesin</td>
<td>178</td>
</tr>
<tr>
<td>Ketamine + Xylazine + Buprenorphine</td>
<td>178</td>
</tr>
<tr>
<td>Ketamine + Diazepam</td>
<td>178</td>
</tr>
<tr>
<td>Midazolam + Butorphanol</td>
<td>179</td>
</tr>
<tr>
<td>Midazolam + Fentanyl + Fluanisone</td>
<td>179</td>
</tr>
<tr>
<td>Midazolam + Methadone + Propofol + Isoflurane + Continuous Infusion of Propofol and Fentanyl</td>
<td>179</td>
</tr>
<tr>
<td>Acepromazine + Meperidine</td>
<td>179</td>
</tr>
<tr>
<td>Fentanyl + Droperidol (Innovar-Vet®)</td>
<td>180</td>
</tr>
<tr>
<td>Azaperone + Metomidate</td>
<td>180</td>
</tr>
<tr>
<td>Acepromazine + Etorphine</td>
<td>180</td>
</tr>
<tr>
<td>Fentanyl + Morphine</td>
<td>180</td>
</tr>
<tr>
<td>Fentanyl + Propofol</td>
<td>181</td>
</tr>
<tr>
<td>Xylazine + Morphine</td>
<td>181</td>
</tr>
<tr>
<td>Oxymorphone + Bupivacaine</td>
<td>181</td>
</tr>
<tr>
<td>Tiletamine + Zolazepam (Telazol®, Zoletil®)</td>
<td>181</td>
</tr>
<tr>
<td>Local Anesthetic Agents</td>
<td>182</td>
</tr>
<tr>
<td>Non-steroidal Anti-inflammatory Agents</td>
<td>183</td>
</tr>
</tbody>
</table>
8 Naturally Occurring and Iatrogenic Animal Models of Valvular, Infectious, and Arrhythmic Cardiovascular Disease

Congenital Cardiac Defects, General Information ... 203
Genetically Engineered Models, General Information 204
Naturally Occurring Models of Valvular Disease ... 205
Iatrogenic Models of Valvular Disease ... 207
Infectious Cardiovascular Disease ... 208
 Bartonella sp ... 208
 Borrelia sp ... 208
 Coxsackievirus sp ... 209
Diphtheritic Myocarditis .. 209
Encephalomyocarditis Virus .. 210
Autoimmune Myocarditis ... 210
 Infectious Complications Following Burn Injury 210
Arrhythmic Cardiovascular Disease ... 211
 Naturally Occurring Cardiac Arrhythmias .. 211
 Iatrogenic Cardiac Arrhythmias ... 211

9 Iatrogenic Models of Ischemic Heart Disease ... 219

Global Ischemia ... 219
Regional Ischemia .. 221

10 Iatrogenic, Transgenic, and Naturally Occurring Models of Cardiomyopathy and Heart Failure ... 231

Naturally Occurring Models of Cardiomyopathy ... 232
 Heritable HCM in Cats ... 232
 DCM in Dogs ... 233
Cattle with Cardiomyopathy and Woolly Hair Coat Syndrome 234
Primates ... 235
Whales .. 235
Iatrogenic Models of Cardiomyopathy and Heart Failure 235
 Ventricular Arrhythmia ... 235
 Increasing the Ventricular Workload ... 236
 Rapid Cardiac Pacing .. 236
 Pressure Overload ... 236
 Volume Overload .. 237
 Valvular Stenoses or Insufficiencies .. 237
Contents

Other Iatrogenic Models of Cardiomyopathy and Heart Failure 237
 Anthracycline-Induced Cardiomyopathy.. 237
 Diabetic and Lipid-Toxic Models of Cardiomyopathy 238
 Chronic Myocardial Ischemia Models of Cardiomyopathy............... 238
 Toxocosis and Mineral-Deficient Models of Cardiomyopathy......... 239
 Autoimmune Models of Cardiomyopathy ... 239
 Hyperthyroid and Hyper-Adrenergic Models of Cardiomyopathy...... 240
 Chronic Hypoxia Models of Cardiomyopathy.. 240
 Liver Cirrhosis Models of Cardiomyopathy 240
 Murine Cysticercosis Model of Cardiomyopathy......................... 240
 Commercially Available Inbred-Rat Models of Cardiomyopathy and Heart Failure ... 240
 Transgenic Models of Cardiomyopathy and Heart Failure 241
 Mouse and Rat Models of Familial Hypertrophic Cardiomyopathy and HCM .. 241
 Mouse and Rat Models of DCM .. 242
 Overexpression Models.. 245

11 Iatrogenic, Congenic, and Transgenic Models of Hypertension....... 259

 Renovascular Hypertension .. 260
 2K1C and 1K1C Renovascular Hypertension in Rats.......................... 261
 2K1C and 1K1C Renovascular Hypertension Models in Mice............. 263
 Renovascular Hypertension Models in Rabbits 264
 1K1C Renovascular Hypertension in Dogs .. 265
 Renovascular Hypertension in Pigs .. 265
 Genetic Models of Hypertension .. 266
 Spontaneously Hypertensive Rat ... 266
 Stroke-Prone SHR.. 269
 Dahl Salt-Sensitive and Insensitive Rats .. 270
 Other Salt-Sensitive (Salt-Induced) Models of Hypertension 272
 Angiotensin-II-Induced Hypertension ... 273
 DOCA-Induced Hypertension .. 276
 NO-Synthesis Blockade Hypertension ... 278
 Glucocorticoid-Induced Hypertension .. 280
 Intrauterine Growth-Restricted Induced Hypertension 281
 Other Transgenic and Congenic Models of Hypertension 283
 The mRen-2 Model ... 283
 ATR-1 Models ... 283
 Angio-II Overexpression Models... 284
 G-Protein Models .. 284
 eNOS Models ... 285
 Endothelin Models .. 285
 Chromogranin-A Models ... 286
 PPAR-α Models .. 286
Bradykinin-2 Models ... 286
Estrogen Models ... 287
Corin Models ... 287
Vitamin D Receptor Models ... 287
Glucocorticoid Receptor Models ... 287
Smoothelin Models .. 288
Adiponectin Models .. 288
Aryl Hydrocarbon Models .. 288
Parathyroid Hormone Type 1 Receptor Models 289
Profilin Models .. 289
Oligodeoxynucleotide Models .. 289
Multiple Transgenic Models ... 290
Congenic Models ... 290
Other Models of Systemic Hypertension 291
Pulmonary Hypertension ... 292
Hypoxia-Induced Pulmonary Hypertension 292
Monocrotaline-Induced Pulmonary Hypertension 293
Transgenic Models of Pulmonary Hypertension 294

12 Naturally Occurring, Iatrogenic and Transgenic Models of Atherosclerotic Disease .. 307
Characteristics of Plaque Rupture and Resulting Thrombosis 309
Implication of New “Players” in the Pathogenesis of Atherosclerotic Disease ... 309
Animal Models ... 310
Naturally Occurring Animal Models of Atherosclerosis 311
Primate Models of Atherosclerosis .. 311
Swine Models of Atherosclerosis ... 312
Dog and Cat Models .. 312
Rabbit Models ... 313
Transgenic Rabbit Models .. 314
Rat Models ... 315
Transgenic Rat Models .. 317
Mouse Models ... 317
Mice Models of Glucose Intolerance ... 317
Graft Vasculopathy .. 323
Hamsters .. 324
Sand Rats .. 324

13 Animal Models for the Study of Neurohumeral and Central Neural Control of the Cardiovascular System 331
The Autonomic Nervous System in Blood Pressure Homeostasis and Cardiorespiratory Reflex Responses 333
Rostal and Caudal Ventrolateral Medulla 334
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus Tractus Solitarius</td>
<td>337</td>
</tr>
<tr>
<td>Hypothalamic Paraventricular Nucleus</td>
<td>339</td>
</tr>
<tr>
<td>Periaqueductal Gray</td>
<td>340</td>
</tr>
<tr>
<td>Anterior and Posterior Hypothalamic Areas</td>
<td>342</td>
</tr>
<tr>
<td>Median Preoptic Nucleus</td>
<td>342</td>
</tr>
<tr>
<td>Nucleus Cuneatus</td>
<td>342</td>
</tr>
<tr>
<td>Lateral Parabrachial Nucleus and the Dorsal Raphe Nucleus</td>
<td>343</td>
</tr>
<tr>
<td>Caudal Vestibular Nucleus</td>
<td>343</td>
</tr>
<tr>
<td>Gender Effects on Central Control of Cardiovascular Responses</td>
<td>343</td>
</tr>
<tr>
<td>Neurohumeral Control</td>
<td>344</td>
</tr>
<tr>
<td>Renin-Angiotensin System</td>
<td>344</td>
</tr>
<tr>
<td>Serotonin</td>
<td>344</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>345</td>
</tr>
<tr>
<td>Endogenous Ouabain-Like Substance</td>
<td>345</td>
</tr>
<tr>
<td>Opioids</td>
<td>345</td>
</tr>
<tr>
<td>Tyrosine Hydroxylase and Phenylethanolamine</td>
<td>346</td>
</tr>
<tr>
<td>N-Methyltransferase</td>
<td>346</td>
</tr>
<tr>
<td>Neuropeptide Y</td>
<td>346</td>
</tr>
<tr>
<td>Leptin</td>
<td>346</td>
</tr>
<tr>
<td>Dopamine-β-Hydroxylase</td>
<td>346</td>
</tr>
<tr>
<td>11-β-Hydroxylase and Aldosterone Synthase</td>
<td>347</td>
</tr>
<tr>
<td>Orexin</td>
<td>347</td>
</tr>
<tr>
<td>Urotensin-II</td>
<td>347</td>
</tr>
<tr>
<td>Cholecystokinin</td>
<td>348</td>
</tr>
</tbody>
</table>

14 Other Transgenic Animal Models Used in Cardiovascular Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex-Related Responses</td>
<td>356</td>
</tr>
<tr>
<td>Kinases</td>
<td>357</td>
</tr>
<tr>
<td>Oxidases and Oxygenases</td>
<td>358</td>
</tr>
<tr>
<td>Adenosine and Adrenergic Receptors</td>
<td>359</td>
</tr>
<tr>
<td>Nitric Oxide Synthase</td>
<td>360</td>
</tr>
<tr>
<td>Metabolic Syndrome</td>
<td>361</td>
</tr>
<tr>
<td>Xenotransplantation</td>
<td>362</td>
</tr>
<tr>
<td>Na+/Ca²⁺ and Na+/H⁺ Exchangers</td>
<td>364</td>
</tr>
<tr>
<td>Inflammatory Cytokines</td>
<td>365</td>
</tr>
<tr>
<td>Peroxisome Proliferator-Activated Receptor</td>
<td>366</td>
</tr>
<tr>
<td>Renin-Angiotensin System</td>
<td>366</td>
</tr>
<tr>
<td>Bradykinin-2 Receptor</td>
<td>367</td>
</tr>
<tr>
<td>Apolipoprotein-E and Low-Density Lipoprotein</td>
<td>367</td>
</tr>
<tr>
<td>Knockout Models</td>
<td>367</td>
</tr>
<tr>
<td>Toll-Like Receptors</td>
<td>368</td>
</tr>
<tr>
<td>Caveolin-1 (Cav-1)</td>
<td>368</td>
</tr>
<tr>
<td>Long QT Syndrome</td>
<td>369</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Nuclear Factor Kappa-B</td>
<td>369</td>
</tr>
<tr>
<td>Orphan Nuclear Receptors</td>
<td>370</td>
</tr>
<tr>
<td>Troponin</td>
<td>370</td>
</tr>
<tr>
<td>Chromogranin A</td>
<td>371</td>
</tr>
<tr>
<td>Lectin-Like Oxidized Low-Density Lipoprotein Receptor</td>
<td>371</td>
</tr>
<tr>
<td>Junctin</td>
<td>371</td>
</tr>
<tr>
<td>Connexin</td>
<td>372</td>
</tr>
<tr>
<td>Phospholamban</td>
<td>372</td>
</tr>
<tr>
<td>Fas Ligand</td>
<td>373</td>
</tr>
<tr>
<td>Proteases, Metalloproteinases, and ATPases</td>
<td>373</td>
</tr>
<tr>
<td>Binary Calsequestrin/P2Xr-Purinergic Receptor (CSQ/P2X4R) Transgenics</td>
<td>374</td>
</tr>
<tr>
<td>pro-ANP Gene Disrupted Mouse</td>
<td>375</td>
</tr>
<tr>
<td>Macrophage Colony-Stimulating Factor</td>
<td>375</td>
</tr>
<tr>
<td>Endothelin-1</td>
<td>375</td>
</tr>
<tr>
<td>Elastin</td>
<td>376</td>
</tr>
<tr>
<td>α-2-Antiplasmin</td>
<td>376</td>
</tr>
<tr>
<td>CAMP Response Element Binding Protein</td>
<td>376</td>
</tr>
<tr>
<td>Fatty Acid Transport Protein: CD36</td>
<td>376</td>
</tr>
<tr>
<td>Clotting Factor XIII</td>
<td>377</td>
</tr>
<tr>
<td>Apelin</td>
<td>377</td>
</tr>
<tr>
<td>T-Box Transcription Factor</td>
<td>377</td>
</tr>
<tr>
<td>Thrombospondin-1 and Its Receptor CD47</td>
<td>377</td>
</tr>
<tr>
<td>Polyomavirus Middle T Antigen</td>
<td>378</td>
</tr>
<tr>
<td>Thrombopoietin Receptor</td>
<td>378</td>
</tr>
<tr>
<td>Vascular Endothelial Growth Factor</td>
<td>378</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>378</td>
</tr>
<tr>
<td>ATP-Binding Membrane Cassette Transporter-A1</td>
<td>379</td>
</tr>
<tr>
<td>The K+/Cl− Cotransporter KCC3</td>
<td>379</td>
</tr>
<tr>
<td>Aldosterone Synthase Overexpression</td>
<td>379</td>
</tr>
<tr>
<td>Cysteine and Glycine-Rich Protein-2 (CSRP-2)</td>
<td>379</td>
</tr>
<tr>
<td>Parathyroid Hormone Type-1 Receptor and PTH/PTH-Related Protein</td>
<td>380</td>
</tr>
<tr>
<td>Vitamin D Receptor</td>
<td>380</td>
</tr>
<tr>
<td>Thromboxane Receptor (Tp)</td>
<td>380</td>
</tr>
<tr>
<td>T and B Cells</td>
<td>380</td>
</tr>
<tr>
<td>Vanilloid Type-1 Receptors (TRPV-1)</td>
<td>381</td>
</tr>
<tr>
<td>Serotonin Transporter (SERT)</td>
<td>381</td>
</tr>
<tr>
<td>CC Chemokine Receptor-2 (CCR-2)</td>
<td>381</td>
</tr>
<tr>
<td>Thymosin β-4</td>
<td>381</td>
</tr>
</tbody>
</table>

Index .. 393
Dr. David Gross entered private veterinary practice after earning the DVM degree from Colorado State University in 1960. In 1974 he was awarded the Ph.D. degree in physiology from the Ohio State University beginning a 36-year career in academics that culminated as professor and head of the Department of Veterinary Biosciences in the College of Veterinary Medicine, University of Illinois, Urbana-Champaign. Dr. Gross’ research career encompassed 58 funded projects totaling over $5.5 million and 91 papers published in refereed journals using a wide variety of animal models. Ironically, his three most-cited research papers received no external funding. He and his colleagues showed that feeding dietary cholesterol to rabbits induced Alzheimer’s-like lesions in the brain. Their work also showed that surgery involving cardiopulmonary bypass resulted in Alzheimer’s-like brain lesions in pigs. With another group of colleagues, he helped pioneer minimally invasive coronary artery bypass grafting techniques using the pig as a model.