Static Timing Analysis for Nanometer Designs
A Practical Approach
Static Timing Analysis for Nanometer Designs
A Practical Approach
Preface .. xv

CHAPTER 1: Introduction .. 1
 1.1 Nanometer Designs .. 1
 1.2 What is Static Timing Analysis? 2
 1.3 Why Static Timing Analysis? 4
 Crosstalk and Noise, 4
 1.4 Design Flow ... 5
 1.4.1 CMOS Digital Designs 5
 1.4.2 FPGA Designs ... 8
 1.4.3 Asynchronous Designs 8
 1.5 STA at Different Design Phases 9
 1.6 Limitations of Static Timing Analysis 9
 1.7 Power Considerations ... 12
 1.8 Reliability Considerations 13
 1.9 Outline of the Book .. 13

CHAPTER 2: STA Concepts .. 15
 2.1 CMOS Logic Design .. 15
 2.1.1 Basic MOS Structure 15
 2.1.2 CMOS Logic Gate 16
 2.1.3 Standard Cells .. 18
 2.2 Modeling of CMOS Cells 20
 2.3 Switching Waveform .. 23
CONTENTS

2.4 Propagation Delay ... 25
2.5 Slew of a Waveform ... 28
2.6 Skew between Signals ... 30
2.7 Timing Arcs and Unateness .. 33
2.8 Min and Max Timing Paths .. 34
2.9 Clock Domains ... 36
2.10 Operating Conditions ... 39

CHAPTER 3: Standard Cell Library .. 43
3.1 Pin Capacitance ... 44
3.2 Timing Modeling ... 44
 3.2.1 Linear Timing Model ... 46
 3.2.2 Non-Linear Delay Model .. 47
 Example of Non-Linear Delay Model Lookup, 52
 3.2.3 Threshold Specifications and Slew Derating 53
3.3 Timing Models - Combinational Cells 56
 3.3.1 Delay and Slew Models ... 57
 Positive or Negative Unate, 58
 3.3.2 General Combinational Block 59
3.4 Timing Models - Sequential Cells .. 60
 3.4.1 Synchronous Checks: Setup and Hold 62
 Example of Setup and Hold Checks, 62
 Negative Values in Setup and Hold Checks, 64
 3.4.2 Asynchronous Checks ... 66
 Recovery and Removal Checks, 66
 Pulse Width Checks, 66
 Example of Recovery, Removal and Pulse Width Checks, 67
 3.4.3 Propagation Delay .. 68
3.5 State-Dependent Models .. 70
 XOR, XNOR and Sequential Cells, 70
3.6 Interface Timing Model for a Black Box 73
3.7 Advanced Timing Modeling ... 75
 3.7.1 Receiver Pin Capacitance .. 76
 Specifying Capacitance at the Pin Level, 77
 Specifying Capacitance at the Timing Arc Level, 77
 3.7.2 Output Current .. 79
3.7.3 Models for Crosstalk Noise Analysis 80
 DC Current, 82
 Output Voltage, 83
 Propagated Noise, 83
 Noise Models for Two-Stage Cells, 84
 Noise Models for Multi-stage and Sequential Cells, 85
3.7.4 Other Noise Models ... 87
3.8 Power Dissipation Modeling 88
 3.8.1 Active Power .. 88
 Double Counting Clock Pin Power?, 92
 3.8.2 Leakage Power ... 92
3.9 Other Attributes in Cell Library 94
 Area Specification, 94
 Function Specification, 95
 SDF Condition, 95
3.10 Characterization and Operating Conditions 96
 What is the Process Variable?, 96
 3.10.1 Derating using K-factors 97
 3.10.2 Library Units .. 99

CHAPTER 4: Interconnect Parasitics 101
4.1 RLC for Interconnect .. 102
 T-model, 103
 Pi-model, 104
4.2 Wireload Models .. 105
 4.2.1 Interconnect Trees .. 108
 4.2.2 Specifying Wireload Models 110
4.3 Representation of Extracted Parasitics 113
 4.3.1 Detailed Standard Parasitic Format 113
 4.3.2 Reduced Standard Parasitic Format 115
 4.3.3 Standard Parasitic Exchange Format 117
4.4 Representing Coupling Capacitances 118
4.5 Hierarchical Methodology 119
 Block Replicated in Layout, 120
4.6 Reducing Parasitics for Critical Nets 120
 Reducing Interconnect Resistance, 120
 Increasing Wire Spacing, 121

vii
Parasitics for Correlated Nets, 121

CHAPTER 5: Delay Calculation .. 123

5.1 Overview ... 123
 5.1.1 Delay Calculation Basics ... 123
 5.1.2 Delay Calculation with Interconnect 125
 Pre-layout Timing, 125
 Post-layout Timing, 126

5.2 Cell Delay using Effective Capacitance 126

5.3 Interconnect Delay .. 131
 Elmore Delay, 132
 Higher Order Interconnect Delay Estimation, 134
 Full Chip Delay Calculation, 135

5.4 Slew Merging ... 135

5.5 Different Slew Thresholds .. 137

5.6 Different Voltage Domains .. 140

5.7 Path Delay Calculation .. 140
 5.7.1 Combinational Path Delay 141
 5.7.2 Path to a Flip-flop ... 143
 Input to Flip-flop Path, 143
 Flip-flop to Flip-flop Path, 144

5.8 Slack Calculation .. 146

CHAPTER 6: Crosstalk and Noise .. 147

6.1 Overview ... 148

6.2 Crosstalk Glitch Analysis .. 150
 6.2.1 Basics .. 150
 6.2.2 Types of Glitches ... 152
 Rise and Fall Glitches, 152
 Overshoot and Undershoot Glitches, 152
 6.2.3 Glitch Thresholds and Propagation 153
 DC Thresholds, 153
 AC Thresholds, 156

6.2.4 Noise Accumulation with Multiple Aggressors 160

6.2.5 Aggressor Timing Correlation 160
6.2.6 Aggressor Functional Correlation 162
6.3 Crosstalk Delay Analysis ... 164
 6.3.1 Basics .. 164
 6.3.2 Positive and Negative Crosstalk 167
 6.3.3 Accumulation with Multiple Aggressors 169
 6.3.4 Aggressor Victim Timing Correlation 169
 6.3.5 Aggressor Victim Functional Correlation 171
6.4 Timing Verification Using Crosstalk Delay 171
 6.4.1 Setup Analysis .. 172
 6.4.2 Hold Analysis ... 173
6.5 Computational Complexity ... 175
 Hierarchical Design and Analysis, 175
 Filtering of Coupling Capacitances, 175
6.6 Noise Avoidance Techniques 176

CHAPTER 7: Configuring the STA Environment 179
7.1 What is the STA Environment? 180
7.2 Specifying Clocks ... 181
 7.2.1 Clock Uncertainty .. 186
 7.2.2 Clock Latency ... 188
7.3 Generated Clocks .. 190
 Example of Master Clock at Clock Gating Cell Output, 194
 Generated Clock using Edge and Edge_shift Options, 195
 Generated Clock using Invert Option, 198
 Clock Latency for Generated Clocks, 200
 Typical Clock Generation Scenario, 200
7.4 Constraining Input Paths ... 201
7.5 Constraining Output Paths ... 205
 Example A, 205
 Example B, 206
 Example C, 206
7.6 Timing Path Groups .. 207
7.7 Modeling of External Attributes 210
 7.7.1 Modeling Drive Strengths 211
 7.7.2 Modeling Capacitive Load 214
7.8 Design Rule Checks .. 215
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Virtual Clocks</td>
<td>217</td>
</tr>
<tr>
<td>7.10</td>
<td>Refining the Timing Analysis</td>
<td>219</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Specifying Inactive Signals</td>
<td>220</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Breaking Timing Arcs in Cells</td>
<td>221</td>
</tr>
<tr>
<td>7.11</td>
<td>Point-to-Point Specification</td>
<td>222</td>
</tr>
<tr>
<td>7.12</td>
<td>Path Segmentation</td>
<td>224</td>
</tr>
<tr>
<td>Chapter 8: Timing Verification</td>
<td></td>
<td>227</td>
</tr>
<tr>
<td>8.1</td>
<td>Setup Timing Check</td>
<td>228</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Flip-flop to Flip-flop Path</td>
<td>231</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Input to Flip-flop Path</td>
<td>237</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Flip-flop to Output Path</td>
<td>240</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Input to Output Path</td>
<td>244</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Frequency Histogram</td>
<td>246</td>
</tr>
<tr>
<td>8.2</td>
<td>Hold Timing Check</td>
<td>248</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Flip-flop to Flip-flop Path</td>
<td>252</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Input to Flip-flop Path</td>
<td>254</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Flip-flop to Output Path</td>
<td>256</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Input to Output Path</td>
<td>259</td>
</tr>
<tr>
<td>8.3</td>
<td>Multicycle Paths</td>
<td>260</td>
</tr>
<tr>
<td>8.4</td>
<td>False Paths</td>
<td>272</td>
</tr>
<tr>
<td>8.5</td>
<td>Half-Cycle Paths</td>
<td>274</td>
</tr>
<tr>
<td>8.6</td>
<td>Removal Timing Check</td>
<td>277</td>
</tr>
<tr>
<td>8.7</td>
<td>Recovery Timing Check</td>
<td>279</td>
</tr>
<tr>
<td>8.8</td>
<td>Timing across Clock Domains</td>
<td>281</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Slow to Fast Clock Domains</td>
<td>281</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Fast to Slow Clock Domains</td>
<td>289</td>
</tr>
<tr>
<td>8.9</td>
<td>Examples</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Half-cycle Path - Case 1</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>Half-cycle Path - Case 2</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Fast to Slow Clock Domain</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Slow to Fast Clock Domain</td>
<td>303</td>
</tr>
</tbody>
</table>
8.10 Multiple Clocks ... 305
 8.10.1 Integer Multiples .. 305
 8.10.2 Non-Integer Multiples 308
 8.10.3 Phase Shifted .. 314

CHAPTER 9: Interface Analysis 317
 9.1 IO Interfaces .. 317
 9.1.1 Input Interface ... 318
 Waveform Specification at Inputs, 318
 Path Delay Specification to Inputs, 321
 9.1.2 Output Interface ... 323
 Output Waveform Specification, 323
 External Path Delays for Output, 327
 9.1.3 Output Change within Window 328
 9.2 SRAM Interface .. 336
 9.3 DDR SDRAM Interface ... 341
 9.3.1 Read Cycle ... 343
 9.3.2 Write Cycle .. 348
 Case 1: Internal 2x Clock, 349
 Case 2: Internal 1x Clock, 354
 9.4 Interface to a Video DAC 360

CHAPTER 10: Robust Verification 365
 10.1 On-Chip Variations .. 365
 Analysis with OCV at Worst PVT Condition, 371
 OCV for Hold Checks, 373
 10.2 Time Borrowing ... 377
 Example with No Time Borrowed, 379
 Example with Time Borrowed, 382
 Example with Timing Violation, 384
 10.3 Data to Data Checks ... 385
 10.4 Non-Sequential Checks 392
 10.5 Clock Gating Checks ... 394
 Active-High Clock Gating, 396
 Active-Low Clock Gating, 403
 Clock Gating with a Multiplexer, 406
Clock Gating with Clock Inversion, 409

10.6 Power Management .. 412
 10.6.1 Clock Gating ... 413
 10.6.2 Power Gating .. 414
 10.6.3 Multi Vt Cells ... 416
 High Performance Block with High Activity, 416
 High Performance Block with Low Activity, 417
 10.6.4 Well Bias ... 417

10.7 Backannotation .. 418
 10.7.1 SPEF ... 418
 10.7.2 SDF ... 418

10.8 Sign-off Methodology .. 418
 Parasitic Interconnect Corners, 419
 Operating Modes, 420
 PVT Corners, 420
 Multi-Mode Multi-Corner Analysis, 421

10.9 Statistical Static Timing Analysis 422
 10.9.1 Process and Interconnect Variations 423
 Global Process Variations, 423
 Local Process Variations, 424
 Interconnect Variations, 426
 10.9.2 Statistical Analysis .. 427
 What is SSTA?, 427
 Statistical Timing Libraries, 429
 Statistical Interconnect Variations, 430
 SSTA Results, 431

10.10 Paths Failing Timing? .. 433
 No Path Found, 434
 Clock Crossing Domain, 434
 Inverted Generated Clocks, 435
 Missing Virtual Clock Latency, 439
 Large I/O Delays, 440
 Incorrect I/O Buffer Delay, 441
 Incorrect Latency Numbers, 442
 Half-cycle Path, 442
 Large Delays and Transition Times, 443
 Missing Multicycle Hold, 443
 Path Not Optimized, 443
Path Still Not Meeting Timing, 443
What if Timing Still Cannot be Met, 444

10.11 Validating Timing Constraints ... 444
 Checking Path Exceptions, 444
 Checking Clock Domain Crossing, 445
 Validating IO and Clock Constraints, 446

Appendix A: SDC ... 447
A.1 Basic Commands. ... 448
A.2 Object Access Commands. .. 449
A.3 Timing Constraints ... 453
A.4 Environment Commands. .. 461
A.5 Multi-Voltage Commands. ... 466

Appendix B: Standard Delay Format (SDF) 467
B.1 What is it? ... 468
B.2 The Format ... 471
 Delays, 480
 Timing Checks, 482
 Labels, 485
 Timing Environment, 485
B.2.1 Examples ... 485
 Full-adder, 485
 Decade Counter, 490
B.3 The Annotation Process .. 495
B.3.1 Verilog HDL .. 496
B.3.2 VHDL ... 499
B.4 Mapping Examples .. 501
 Propagation Delay, 502
 Input Setup Time, 507
 Input Hold Time, 509
 Input Setup and Hold Time, 510
 Input Recovery Time, 511
 Input Removal Time, 512
 Period, 513
 Pulse Width, 514
 Input Skew Time, 515
Timing, timing, timing! That is the main concern of a digital designer charged with designing a semiconductor chip. What is it, how is it described, and how does one verify it? The design team of a large digital design may spend months architecting and iterating the design to achieve the required timing target. Besides functional verification, the timing closure is the major milestone which dictates when a chip can be released to the semiconductor foundry for fabrication. This book addresses the timing verification using static timing analysis for nanometer designs.

The book has originated from many years of our working in the area of timing verification for complex nanometer designs. We have come across many design engineers trying to learn the background and various aspects of static timing analysis. Unfortunately, there is no book currently available that can be used by a working engineer to get acquainted with the details of static timing analysis. The chip designers lack a central reference for information on timing, that covers the basics to the advanced timing verification procedures and techniques.

The purpose of this book is to provide a reference for both beginners as well as professionals working in the area of static timing analysis. The book
is intended to provide a blend of the underlying theoretical background as well as in-depth coverage of timing verification using static timing analysis. The book covers topics such as cell timing, interconnect, timing calculation, and crosstalk, which can impact the timing of a nanometer design. It describes how the timing information is stored in cell libraries which are used by synthesis tools and static timing analysis tools to compute and verify timing.

This book covers CMOS logic gates, cell library, timing arcs, waveform slew, cell capacitance, timing modeling, interconnect parasitics and coupling, pre-layout and post-layout interconnect modeling, delay calculation, specification of timing constraints for analysis of internal paths as well as IO interfaces. Advanced modeling concepts such as composite current source (CCS) timing and noise models, power modeling including active and leakage power, and crosstalk effects on timing and noise are described.

The static timing analysis topics covered start with verification of simple blocks particularly useful for a beginner to this area. The topics then extend to complex nanometer designs with concepts such as modeling of on-chip variations, clock gating, half-cycle and multicycle paths, false paths, as well as timing of source synchronous IO interfaces such as for DDR memory interfaces. Timing analyses at various process, environment and interconnect corners are explained in detail. Usage of hierarchical design methodology involving timing verification of full chip and hierarchical building blocks is covered in detail. The book provides detailed descriptions for setting up the timing analysis environment and for performing the timing analysis for various cases. It describes in detail how the timing checks are performed and provides several commonly used example scenarios that help illustrate the concepts. Multi-mode multi-corner analysis, power management, as well as statistical timing analyses are also described.

Several chapters on background reference materials are included in the appendices. These appendices provide complete coverage of SDC, SDF and SPEF formats. The book describes how these formats are used to provide information for static timing analysis. The SDF provides cell and interconnect delays for a design under analysis. The SPEF provides parasitic information, which are the resistance and capacitance networks of nets in a
design. Both SDF and SPEF are industry standards and are described in detail. The SDC format is used to provide the timing specifications or constraints for the design under analysis. This includes specification of the environment under which the analysis must take place. The SDC format is a de facto industry standard used for describing timing specifications.

The book is targeted for professionals working in the area of chip design, timing verification of ASICs and also for graduate students specializing in logic and chip design. Professionals who are beginning to use static timing analysis or are already well-versed in static timing analysis can use this book since the topics covered in the book span a wide range. This book aims to provide access to topics that relate to timing analysis, with easy-to-read explanations and figures along with detailed timing reports.

The book can be used as a reference for a graduate course in chip design and as a text for a course in timing verification targeted to working engineers. The book assumes that the reader has a background knowledge of digital logic design. It can be used as a secondary text for a digital logic design course where students learn the fundamentals of static timing analysis and apply it for any logic design covered in the course.

Our book emphasizes practicality and thorough explanation of all basic concepts which we believe is the foundation of learning more complex topics. It provides a blend of theoretical background and hands-on guide to static timing analysis illustrated with actual design examples relevant for nanometer applications. Thus, this book is intended to fill a void in this area for working engineers and graduate students.

The book describes timing for CMOS digital designs, primarily synchronous; however, the principles are applicable to other related design styles as well, such as for FPGAs and for asynchronous designs.

Book Organization

The book is organized such that the basic underlying concepts are described first before delving into more advanced topics. The book starts
with the basic timing concepts, followed by commonly used library modeling, delay calculation approaches, and the handling of noise and crosstalk for a nanometer design. After the detailed background, the key topics of timing verification using static timing analysis are described. The last two chapters focus on advanced topics including verification of special IO interfaces, clock gating, time borrowing, power management and multi-corner and statistical timing analysis.

Chapter 1 provides an explanation of what static timing analysis is and how it is used for timing verification. Power and reliability considerations are also described. Chapter 2 describes the basics of CMOS logic and the timing terminology related to static timing analysis.

Chapter 3 describes timing related information present in the commonly used library cell descriptions. Even though a library cell contains several attributes, this chapter focuses only on those that relate to timing, crosstalk, and power analysis. Interconnect is the dominant effect on timing in nanometer technologies and Chapter 4 provides an overview of various techniques for modeling and representing interconnect parasitics.

Chapter 5 explains how cell delays and paths delays are computed for both pre-layout and post-layout timing verification. It extends the concepts described in the preceding chapters to obtain timing of an entire design.

In nanometer technologies, the effect of crosstalk plays an important role in the signal integrity of the design. Relevant noise and crosstalk analyses, namely glitch analysis and crosstalk analysis, are described in Chapter 6. These techniques are used to make the ASIC behave robustly from a timing perspective.

Chapter 7 is a prerequisite for succeeding chapters. It describes how the environment for timing analysis is configured. Methods for specifying clocks, IO characteristics, false paths and multicycle paths are described in Chapter 7. Chapter 8 describes the timing checks that are performed as part of various timing analyses. These include amongst others - setup, hold and asynchronous recovery and removal checks. These timing checks are intended to exhaustively verify the timing of the design under analysis.
Chapter 9 focuses on the timing verification of special interfaces such as source synchronous and memory interfaces including DDR (Double Data Rate) interfaces. Other advanced and critical topics such as on-chip variation, time borrowing, hierarchical methodology, power management and statistical timing analysis are described in Chapter 10.

The SDC format is described in Appendix A. This format is used to specify the timing constraints of a design. Appendix B describes the SDF format in detail with many examples of how delays are back-annotated. This format is used to capture the delays of a design in an ASCII format that can be used by various tools. Appendix C describes the SPEF format which is used to provide the parasitic resistance and capacitance values of a design.

All timing reports are generated using PrimeTime, a static timing analysis tool from Synopsys, Inc. Highlighted text in reports indicates specific items of interest pertaining to the explanation in the accompanying text.

New definitions are highlighted in bold. Certain words are highlighted in italics just to keep the understanding that the word is special as it relates to this book and is different from the normal English usage.

Acknowledgments

We would like to express our deep gratitude to eSilicon Corporation for providing us the opportunity to write this book.

We also would like to acknowledge the numerous and valuable insights provided by Kit-Lam Cheong, Ravi Kurlagunda, Johnson Limqueco, Pete Jarvis, Sanjana Nair, Gilbert Nguyen, Chris Papademetrious, Pierrick Pedron, Hai Phuong, Sachin Sapatnekar, Ravi Shankar, Chris Smirga, Bill Tuohy, Yeffi Vanatta, and Hormoz Yaghutiel, in reviewing earlier drafts of the book. Their feedback has been invaluable in improving the quality and usefulness of this book.
Last, but not least, we would like to thank our families for their patience during the development of this book.

Dr. Rakesh Chadha
Dr. J. Bhasker

January 2009