COMPUTATIONAL NEUROSCIENCE
Aims and Scope
Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization has been a basic tool in all areas of applied mathematics, engineering, medicine, economics and other sciences.

The Springer Optimization and Its Applications series publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository works that focus on algorithms for solving optimization problems and also study applications involving such problems. Some of the topics covered include nonlinear optimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multiobjective programming, description of software packages, approximation techniques and heuristic approaches.

For other titles in this series, go to www.springer.com/series/7393
Computational Neuroscience

By

WANPRACHA CHAOVALITWONGSE
Rutgers University, Piscataway, NJ, USA

PANOS M. PARDALOS
University of Florida, Gainesville, FL, USA

PETROS XANTHOPOULOS
University of Florida, Gainesville, FL, USA

Springer
To our parents
Preface

There are in fact two things, science and opinion; the former begets knowledge, the latter ignorance.

Hippocrates (460BC-360BC)

This book represents a collection of recent advances in computational studies in neuroscience research that practically applies to a collaborative and integrative environment in engineering and medical domains. This work has been designed to address the explosion of interest by academic researchers and practitioners in highly-effective coordination between computational models and tools and quantitative investigation of neuroscientific data. To bridge the vital gap between science and medicine, this book brings together diverse research areas ranging from medical signal processing, image analysis, and data mining to neural network modeling, regulation of gene expression, and brain dynamics.

We hope that this work will also be of value to investigators and practitioners in academic institutions who become involved in computational modeling as an aid in translating information in neuroscientific data to their colleagues in medical domain. This volume will be very appealing to graduate (and advanced undergraduate) students, researchers, and practitioners across a wide range of industries (e.g., pharmaceutical, chemical, biological sciences), who require a detailed overview of the practical aspects of computational modeling in real-life neuroscience problems. For this reason, our audience is assumed to be very diverse and heterogenous, including:
• researchers from engineering, computer science, statistics, and mathematics domains as well as medical and biological scientists;
• physicians working in scientific research to understand how basic science can be linked with biological systems.

The book presents a collection of papers, several of which have been presented at DIMACS Conference on Computational Neuroscience that took place at the University of Florida on February 20 – 21, 2008. It is consisted of three major research themes in this book: data mining and medical data processing, brain modeling, and analysis of brain dynamics and neural synchronization. Each theme addresses the answer to a classical, yet extremely important, question in neuroscience, “How do we go from the mathematical modeling and computational techniques to the practical investigations of neuroscience problems?”

The first theme includes six chapters focused on data mining and medical data processing. The first chapter, by Paiva et al. lay down the platform of this book by presenting a complete methodological framework based on optimization for reproducing Hilbert spaces of spike trains. In the second chapter, Anderson et al. propose graph-theoretic models to investigate functional cooperation in the human brain. Not only can these models be applied to cognitive studies, they may also be used in diagnosis studies. In the third chapter, Sakkalis and Zervakis propose a framework for extracting time frequency features from electroencephalographic (EEG) recordings through the use of wavelet analysis. In the fourth chapter Chih-I Hung et al. present an application of independent component analysis (ICA) transformation into Creutzfeldt–Jakob disease. In the fifth chapter, Ramezani and Fatemizadeh discuss a comparison study of classification methods using various data preprocessing procedures applied to functional magnetic resonance imaging (fMRI) data for the detection of brain activation. In the sixth chapter, Fan et al. discuss the most well-known methods in biclustering applied to a neuroscientific application in evaluating the therapeutic intervention using vagus nerve stimulation treatment for patients with epilepsy. In the seventh chapter, Achler and Amir propose a genetic classifier used in the study of gene expression regulation.

The second theme includes five chapters that provide reviews and challenges in brain modeling in respect of human behavior and brain disease. In the eighth chapter, Ramírez et al. provide a review of the inverse source localization problem for neuroelectromagnetic source imaging of brain dynamics. In the ninth chapter, Wu et al. propose an approach based on the queuing theory and reinforcement learning for modeling the brain function and interpreting the human behavior. In the tenth and eleventh chapters, Cutsuridis suggests deterministic mathematical model for modeling neural networks of voluntary single-joint movement organization in normal subjects as well as patients with Parkinson’s disease. In the twelfth chapter, Kawai et al. propose a parametric model for optical time series data of the respiratory neural network in the brainstem. In the thirteenth chapter, Leondopulos and Micheli-Tzanakou give an overview of the closed-loop deep brain stimulation technology and in the fourteenth chapter, Garzon and Neel present a novel approach to build fine grain models of the human brain with a large number of neurons inspired by recent advances in computing based on DNA molecules.
The third theme includes six chapters that focus on quantitative analyses of EEG recordings to investigate the brain dynamics and neural synchronization. In the fifteenth chapter, Sabesan et al. investigate the synchronization in the neural networks based on information flow, measured by the metric of network transfer entropy, among different brain areas. In the sixteenth chapter, Pardalos et al. describe an optimization-based model for estimating all Lyapunov exponents to characterize the dynamics of EEG recordings. In the seventeenth chapter, Faith et al. report the potential use of nonlinear dynamics for analyzing EEG recordings to evaluate the efficacy of antiepileptic drugs. In the eighteenth chapter, Kammerdiner and Pardalos study the synchronization of EEG recordings using the measures of phase synchronization and cointergrated VAR. In the nineteenth chapter, Liu et al. use the concept of mutual information to measure the coupling strength of EEG recordings in order to evaluate the efficacy of antiepileptic drugs in a very rare brain disease. In the last chapter, Sackellares et al. propose a seizure monitoring and alert system to be used in an intensive care unit based on statistical analyses of EEG recordings.

The completion of this issue would not have been possible without the assistance of many of our colleagues. We wish to express our gratitude to the authors for submitting and revising their work. We wish to express our sincere appreciation to anonymous referees for their careful reviewing. Their constructive comments contributed greatly to the quality of the issue. We cannot thank them enough for their time, efforts, and dedication to make this volume successful. The experience has been challenging, yet extremely rewarding. We truly hope that the reader will find the presented fundamental research and application papers presented as stimulating and valuable as we did.

USA,
July 2009
Wanpracha Chaowalitwongse
Panos M. Pardalos
Petros Xanthopoulos
Contents

Part I Data Mining

1 Optimization in Reproducing Kernel Hilbert Spaces of Spike Trains .. 3
 António R. C. Paiva, Il Park, and José C. Príncipe

2 Investigating Functional Cooperation in the Human Brain Using Simple Graph-Theoretic Methods 31
 Michael L. Anderson, Joan Brumbaugh, and Aysu Şuben

3 Methodological Framework for EEG Feature Selection Based on Spectral and Temporal Profiles 43
 Vangelis Sakkalis and Michalis Zervakis

4 Blind Source Separation of Concurrent Disease-Related Patterns from EEG in Creutzfeldt–Jakob Disease for Assisting Early Diagnosis ... 57
 Chih-I Hung, Po-Shan Wang, Bing-Wen Soong, Shin Teng, Jen-Chuen Hsieh, and Yu-Te Wu

5 Comparison of Supervised Classification Methods with Various Data Preprocessing Procedures for Activation Detection in fMRI Data ... 75
 Mahdi Ramezani and Emad Fatemizadeh

6 Recent Advances of Data Biclustering with Application in Computational Neuroscience 85
 Neng Fan, Nikita Boyko, and Panos M. Pardalos

7 A Genetic Classifier Account for the Regulation of Expression 113
 Tsvi Achler and Eyal Amir
Part II Modeling

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Neuroelectromagnetic Source Imaging of Brain Dynamics</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Rey R. Ramírez, David Wipf, and Sylvain Baillet</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Optimization in Brain? – Modeling Human Behavior and Brain Activation Patterns with Queuing Network and Reinforcement Learning Algorithms</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Changxu Wu, Marc Berman, and Yili Liu</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Neural Network Modeling of Voluntary Single-Joint Movement Organization I. Normal Conditions</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Vassilis Cutsuridis</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Neural Network Modeling of Voluntary Single-Joint Movement Organization II. Parkinson’s Disease</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Vassilis Cutsuridis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Parametric Modeling Analysis of Optical Imaging Data on Neuronal Activities in the Brain</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Shigeharu Kawai, Yositaka Oku, Yasumasa Okada, Fumikazu Miwakeichi, Makio Ishiguro, and Yoshiyasu Tamura</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Advances Toward Closed-Loop Deep Brain Stimulation</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Stathis S. Leondopulos and Evangelia Micheli-Tzanakou</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Molecule-Inspired Methods for Coarse-Grain Multi-System Optimization</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Max H. Garzon and Andrew J. Neel</td>
<td></td>
</tr>
</tbody>
</table>

Part III Brain Dynamics/Synchronization

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>A Robust Estimation of Information Flow in Coupled Nonlinear Systems</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Shivkumar Sabesan, Konstantinos Tsakalis, Andreas Spanias, and Leon Iasemidis</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>An Optimization Approach for Finding a Spectrum of Lyapunov Exponents</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>Panos M. Pardalos, Vitaliy A. Yatsenko, Alexandre Messo, Altannar Chinchuluun, and Petros Xanthopoulos</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Dynamical Analysis of the EEG and Treatment of Human Status Epileptics by Antiepileptic Drugs</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Aaron Faith, Shivkumar Sabesan, Norman Wang, David Treiman, Joseph Sirven, Konstantinos Tsakalis, and Leon Iasemidis</td>
<td></td>
</tr>
</tbody>
</table>
18 Analysis of Multichannel EEG Recordings Based on Generalized Phase Synchronization and Cointegrated VAR 317
Alla R. Kammerdiner and Panos M. Pardalos

19 Antiepileptic Therapy Reduces Coupling Strength Among Brain Cortical Regions in Patients with Unverricht–Lundborg Disease: A Pilot Study ... 341
Chang-Chia Liu, Petros Xanthopoulos, Vera Tomaino, Kazutaka Kobayashi, Basim M. Uthman, and Panos M. Pardalos

20 Seizure Monitoring and Alert System for Brain Monitoring in an Intensive Care Unit .. 357
J. Chris Sackellares, Deng-Shan Shiau, Alla R. Kammerdiner, and Panos M. Pardalos
List of Contributors

Tsvi Achler
Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA,
e-mail: achler@uiuc.edu

Eyal Amir
Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA,
e-mail: eyal@cs.uiuc.edu

Michael L. Anderson
Department of Psychology, Franklin and Marshall College, Lancaster, PA 17604, USA; Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA,
e-mail: michael.anderson@fandm.edu

Sylvain Baillet
MEG Program, Department of Neurology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI, USA,
e-mail: sbaillet@mcw.edu

Marc Berman
Department of Psychology, Department of Industrial and Operations Engineering, University of Michigan-Ann Arbor, MI, USA,
e-mail: bermanm@umich.edu

Nikita Boyko
Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, Gainesville, FL, USA,
e-mail: nikita@ufl.edu

Joan Brumbaugh
Department of Psychology, Franklin and Marshall College, Lancaster, PA 17604, USA
Altannar Chinchuluun
Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, Gainesville, FL, USA,
e-mail: altannar@ufl.edu

Vassilis Cutsuridis
Centre for Memory and Brain, Boston University, Boston, MA, USA,
e-mail: vcut@bu.edu

Aaron Faith
The Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287, USA,
e-mail: atfaith@asu.edu

Neng Fan
Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, Gainesville, FL, USA,
e-mail: andynfan@ufl.edu

Emad Fatemizadeh
Biomedical Image and Signal Processing Laboratory (BiSIPL), School of Electrical Engineering, Sharif University of Technology, Tehran, Iran,
e-mail: Fatemizadeh@sharif.edu

Max H. Garzon
Department of Computer Science, The University of Memphis, Memphis, TN, USA,
e-mail: mgarzon@memphis.edu

Jen-Chuen Hsieh
Integrated Brain Research Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, ROC,
e-mail: jchsieh@vghtpe.gov.tw

Chih-I Hung
Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Integrated Brain Research Laboratory, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, ROC

Leon Iasemidis
The Harrington Department of Bioengineering, Arizona State University, Tempe, AZ, USA; Mayo Clinic, Phoenix, AZ, USA; Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA,
e-mail: leon.iasemidis@asu.edu
Makio Ishiguro
The Institute of Statistical Mathematics, Minato-ku, Tokyo, Japan,
e-mail: ishiguro@ism.ac.jp

Alla R. Kammerdiner
Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL, USA,
e-mail: alla.ua@gmail.com

Shigeharu Kawai
The Graduate University for Advanced Studies, Minato-ku, Tokyo, Japan,
e-mail: kawai@ism.ac.jp

Kazutaka Kobayashi
Department of Neurological Surgery Nihon University School of Medicine,
Tokyo, Japan; Division of Applied System Neuroscience, Department of Advanced
Medical, Science Nihon University School of Medicine, Tokyo, Japan

Stathis S. Leondopulos
Rutgers University, NJ, USA,
e-mail: stathis@ece.rutgers.edu

Chang-Chia Liu
J. Crayton Pruitt Family Department of Biomedical Engineering, University
of Florida, Gainesville, FL, USA,
e-mail: iamjeff@ufl.edu

Yili Liu
Department of Industrial and Operations Engineering, University of Michigan, Ann
Arbor, MI, USA,
e-mail: yililiu@umich.edu

Alexandre Messo
Department of Optimization, Kungliga Tekniska Högskolan, Stockholm, Sweden,
e-mail: alex.messo@gmail.com

Evangelia Micheli-Tzanakou
Rutgers University, NJ, USA,
e-mail: etzanako@rci.rutgers.edu

Fumikazu Miwakeichi
Chiba University, Inage-ku, Chiba, Japan,
e-mail: miwake1@faculty.chiba-u.jp

Andrew J. Neel
Department of Computer Science, The University of Memphis, Memphis, TN,
USA,
e-mail: aneel@memphis.edu

Yasumasa Okada
Keio University Tsukigase Rehabilitation Center, Izu, Shizuoka, Japan,
e-mail: yasumasaokada@1979.jukuin.keio.ac.jp
Yositaka Oku
Hyogo College of Medicine, Nishinomiya, Hyogo, Japan,
e-mail: yoku@hyo-med.ac.jp

António R. C. Paiva
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA,
e-mail: arpaiva@cnel.ufl.edu

Panos M. Pardalos
Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; The Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA,
e-mail: pardalos@ufl.edu

Il Park
Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,
e-mail: memming@cnel.ufl.edu

José C. Príncipe
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA,
e-mail: principe@cnel.ufl.edu

Mahdi Ramezani
Biomedical Image and Signal Processing Laboratory (BiSIPL), School of Electrical Engineering, Sharif University of Technology, Tehran, Iran,
e-mail: Ramezani@ee.sharif.edu

Rey R. Ramírez
MEG Program, Department of Neurology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI, USA,
e-mail: rrramirez@mcw.edu

Shivkumar Sabesan
The Harrington Department of Bioengineering, Arizona State University, Tempe, AZ USA; Barrow Neurological Institute, Phoenix, AZ, USA,
e-mail: ssabesa@asu.edu

J. Chris Sackellares
Optima Neuroscience, Inc., Gainesville, FL, USA,
e-mail: csackellares@optimaneuro.com

Vangelis Sakkalis
Department of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece,
e-mail: sakkalis@ics.forth.gr
Deng-Shan Shiau
Optima Neuroscience, Inc., Gainesville, FL, USA,
e-mail: dshiau@optimaneuro.com

Joseph Sirven
Mayo Clinic, Phoenix, AZ 85054, USA,
e-mail: joseph.sirven@mayo.edu

Bing-Wen Soong
The Neurological Institute, Taipei Veterans General Hospital, Taiwan, ROC;
Department of Neurology, National Yang-Ming University School of Medicine,
Taipei, Taiwan, ROC

Andreas Spanias
Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA,
e-mail: spanias@asu.edu

Aysu Şuben
Department of Psychology, Franklin and Marshall College, Lancaster, PA, USA

Yoshiyasu Tamura
The Institute of Statistical Mathematics, Minato-ku, Tokyo, Japan,
e-mail: tamura@ism.ac.jp

Shin Teng
Department of Biomedical Imaging and Radiological Sciences, National Yang-
Ming University, Taipei, Taiwan, ROC; Integrated Brain Research Laboratory,
Department of Medical Research and Education, Taipei Veterans General Hospital,
Taipei, Taiwan, ROC

Vera Tomaino
Bioinformatics Laboratory, Experimental and Clinical Medicine Department,
Magna Graecia University, viale Europa 88100, Catanzaro, Italy; Department of
Industrial and Systems Engineering, Center for Applied Optimization, University
of Florida, Gainesville, FL, USA,
e-mail: vera.tomaino@gmail.com

David Treiman
Barrow Neurological Institute, Phoenix, AZ, USA,
e-mail: dtreiman@chw.edu

Konstantinos Tsakalis
Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA,
e-mail: tsakalis@asu.edu

Basim M. Uthman
Department of Neurology, University of Florida, Gainesville, FL 32611, USA;
Department of Neuroscience, University of Florida, Gainesville, FL, USA;
The Evelyn F. and William L. McKnight Brain Institute, University of Florida,
List of Contributors

Gainesville, FL, USA; Neurology Services, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA, e-mail: basim.uthman@med.va.gov

Po-Shan Wang
The Neurological Institute, Taipei Veterans General Hospital, Taiwan, ROC; Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC; The Neurological Institute, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan, ROC

Norman Wang
Barrow Neurological Institute, Phoenix, AZ, USA

David Wipf
Biomagnetic Imaging Laboratory, University of California San Francisco, San Francisco, CA, USA, e-mail: david.wipf@mrsc.ucsf.edu

Changxu Wu
Department of Industrial and Systems Engineering, State University of New York (SUNY), Buffalo, NY, USA, e-mail: Changxu@buffalo.edu

Yu-Te Wu
Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, ROC, e-mail: yute.wu@msa.hinet.net

Petros Xanthopoulos
Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, Gainesville, FL, USA, e-mail: petrosx@ufl.edu

Vitaliy A. Yatsenko
Department of Industrial and Systems Engineering, Center for Applied Optimization, University of Florida, Gainesville, FL, USA, e-mail: yatsenko@ufl.edu

Michalis Zervakis
Department of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, e-mail: michalis@display.tuc.gr