OPTIMIZATION AND LOGISTICS CHALLENGES IN THE ENTERPRISE
Aims and Scope
Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization has been a basic tool in all areas of applied mathematics, engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository works that focus on algorithms for solving optimization problems and also study applications involving such problems. Some of the topics covered include nonlinear optimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multiobjective programming, description of software packages, approximation techniques and heuristic approaches.
OPTIMIZATION AND LOGISTICS CHALLENGES IN THE ENTERPRISE

Edited By

WANPRACHA CHAOVALITWONGSE
Rutgers University, Piscataway, NJ, USA

KEVIN C. FURMAN
ExxonMobil Research and Engineering, Annandale NJ, USA

PANOS M. PARDALOS
University of Florida, Gainesville, FL, USA

Springer
Dedicated to our loving families
Preface

“The wisest mind has something yet to learn.”
-George Santayana-

This book represents a collection of computational challenges and recent advances in supply chain, logistics, and optimization research that practically applies to a collaborative and integrative environment in the enterprise. This book has been designed in response to an explosion of interest by academic researchers and industrial practitioners in highly effective coordination between supply chain partners, dynamic collaborative and strategic alliance relationships, and efficient logistics and supply chain network designs that commonly arise in a wide variety of industries. Rather than concentrating on just methodology or techniques (such as mathematical programming or simulation) or specific application areas (such as production, inventory or transportation), we have chosen to present the reader with a collection of topics, which bridge the gap between the operations research and mathematical optimization research from the academic arena with industrial practice. It will also be of value to investigators and practitioners in academic institutions and industry who become involved in supply chain and logistics in enterprise operations as an aid in translating computational optimization techniques to their colleagues in management levels. This book will be very appealing to graduate (and advanced undergraduate) students, researchers and practitioners across a wide range of industries (e.g., pharmaceutical, chemical, transportation, shipping, etc.), who require a detailed overview of the practical aspects of the design, conduct, and the analysis of supply chain and logistics problems arising in real life. For this reason, our audience is assumed to be very diverse and heterogeneous, including:

(a) researchers in operations research from engineering, computer science, statistics and mathematics domains as well as practitioners in industry (e.g., strategic planning directors, operation advisors, senior managers);
(b) researchers from engineering and business domains as well as supply chain and logistics practitioners in industry (e.g., management systems directors, supply chain managers, site supervisors);
(c) researchers in systems engineering and chemical and manufacturing process operations fields as well as investigators and practitioners in the industry who become involved in some way in systems operations (e.g., operations supervisors, process engineers, systems analysts).

There are four major research themes in this book: Process Industry, Supply Chain and Logistics Design, Supply Chain Operation, and Networking and Transportation. Each theme addresses the answer to a classic, yet extremely important, question from industry, “How do we go from the mathematical modeling and optimization techniques to the practical solutions to the enterprise’s operations?”

The first theme includes four chapters focused on optimization and logistics challenges in the process industry. The first chapter, by Grossmann and Furman, lays down the platform of this book by discussing the integration of optimization systems in the process industry throughout an entire enterprise. Enterprise-wide optimization involves the coordinated optimization of research, development, supply, manufacturing, and distribution operations across business functions, organizations and the hierarchy of strategic, tactical and operational decision making. In the second chapter, Zyngier and Kelly consider novel optimization models of inventory for logistics problems in the process industry. These ideas can be applied to process production and distribution planning and scheduling models. The third chapter, by Ierapetritou and Li, presents a review of the methodologies developed to address uncertainty in chemical process planning and scheduling. Recent progress in the areas of sensitivity analysis and parametric programming are highlighted in their application to planning and scheduling in the chemical process industry. In the fourth chapter, Assavapokee et al. address decision making under uncertainty by developing a relative robust optimization algorithm. This work has an impact on supply chain network infrastructure design problems.

The second theme includes four chapters that provides reviews and challenges in supply chain models and logistics design. The fifth chapter, by Mulvey and Erkan, illustrates a supply chain risk management model with a global production problem involving movement of currency. The design of the supply chain includes uncertainty in production and as well as the risks embedded in global financial markets. In the sixth chapter, Miller provides a historical perspective and recommendation on the methods and approaches in the use of optimization technology for decision support by firms at the strategic level down through operations. The seventh chapter, by He et al., presents mathematical models for hub location problems as well as recent advances in optimization used to solve the problems. These problems are primarily of interest for supply chain modelers, especially in warehouse location design. In the eight chapter, Chen et al. present a review of the well-known Nested Partitions method for the solution of discrete optimization
problems. A hybrid framework combining mathematical programming and Nest Partitions is developed and demonstrated on the intermodel hub location class of problems.

The third theme includes three chapters that address issues in supply chain operation. In the ninth chapter, Benli presents a new modeling scheme for scheduling problems that arise in supply chain optimization. This novel framework is illustrated via the lot streaming problem in the production planning area. In the tenth chapter, Metan and Thiele propose a dynamic and data-driven approach to inventory management that incorporates both historical information and addresses seasonality. This approach is demonstrated through extensive computational results with the news vendor problem. In the 11th chapter, Gong et al. consider a problem in task scheduling for service restoration planning. They apply a combined mathematical programming and constraint programming approach to this problem modeled with multiple objective functions.

The last theme includes four chapters that present recent advances in mathematical programming and algorithms developed for logistics networking and transportation problems. In the 12th chapter, Liang and Chaovalitwongse propose a new network model for the aircraft maintenance routing problem. The new model utilizes the idea of using bidirectional flows of aircrafts. The resulting model is very compact and scalable and has been applied to real-life problems. In the 13th chapter, Shen et al. develop a chance constraint model and tabu search solution procedure to look at vehicle routing in which one wishes to minimize unmet demand while addressing uncertainty in both demand and travel times. This application is important in the area of supply chain distribution during disaster scenarios. In the 14th chapter, Agarwal et al. study both carrier alliances and shipper collaborations as they apply to sea, air and trucking cargo. Game theoretic models are developed to analyze the benefits and sustainability issues surrounding these forms of collaboration. In the last chapter, Arulselvan et al. consider wireless agents in a mobile ad hoc network to determine the routing that maximizes connectivity. New formulations and heuristic algorithms are presented to address this problem which can arise in several military applications.

In order to complete this volume, we have dealt with the authors and anonymous referees over the past few years. The experience has been challenging, yet extremely rewarding. We truly hope that the reader will find the fundamental research and applications chapters presented here as stimulating and valuable as we did. We want to thank Prof. Altannar Chinchuluun from the University of Florida for proofreading the final volume. Last but not least we cannot thank the authors and anonymous referees enough for their time, efforts and dedication to make this volume successful.

New Jersey
September 2008

Wanpracha Art Chaovalitwongse
Kevin C. Furman
Panos M. Pardalos
Contents

Preface .. vii
List of Contributors ... xiii

Part I Process Industry

Challenges in Enterprise-wide Optimization for the Process Industries
Ignacio E. Grossmann and Kevin C. Furman 3

Multiproduct Inventory Logistics Modeling in the Process Industries
Danielle Zyngier and Jeffrey D. Kelly 61

Modeling and Managing Uncertainty in Process Planning and Scheduling
Marianthi Ierapetritou and Zukui Li 97

A Relative Robust Optimization Approach for Full Factorial Scenario Design of Data Uncertainty and Ambiguity
Tiravat Assavapokee, Matthew J. Realff, and Jane C. Ammons 145

Part II Supply Chain and Logistics Design

An Enterprise Risk Management Model for Supply Chains
John M. Mulvey and Hafize G. Erkan 177

Notes on using Optimization and DSS Techniques to Support Supply Chain and Logistics Operations
Tan Miller .. 191
On the Quadratic Programming Approach for Hub Location Problems
Xiaozheng He, Anthony Chen, Wanpracha Art Chaovalitwongse, and Henry Liu .. 211

Nested Partitions and Its Applications to the Intermodal Hub Location Problem
Weiwei Chen, Liang Pi, and Leyuan Shi 229

Part III Supply Chain Operation

Event-Time Models for Supply Chain Scheduling
Ömer S. Benli ... 255

A Dynamic and Data-Driven Approach to the News Vendor Problem Under Cyclical Demand
Gokhan Metan and Aurélie Thiele ... 277

Logic-based Multiobjective Optimization for Restoration Planning
Jing Gong, Earl E. Lee, John E. Mitchell, and William A. Wallace 305

Part IV Networking and Transportation

The Aircraft Maintenance Routing Problem
Zhe Liang and Wanpracha Art Chaovalitwongse 327

The Stochastic Vehicle Routing Problem for Minimum Unmet Demand
Zhihong Shen, Fernando Ordóñez, and Maged M. Dessouky 349

Collaboration in Cargo Transportation
Richa Agarwal, Özlem Ergun, Lori Houghtalen, and Okan Orsan Ozener ... 373

Communication Models for a Cooperative Network of Autonomous Agents
Ashwin Arulselvan, Clayton W. Commander, Michael J. Hirsch, and Panos M. Pardalos .. 411
List of Contributors

Richa Agarwal
Department of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332-0100
richaa@amazon.com

Jane C. Ammons
Department of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332-0100
jane.ammons@isye.gatech.edu

Ashwin Arulselvan
Department of Industrial and Systems Engineering
University of Florida
Gainesville, FL 32611
ashwin@ufl.edu

Tiravat Assavapokee
Department of Industrial Engineering
University of Houston
Houston, Texas 77201-4008
tiravat.assavapokee@mail.uh.edu

Omer S. Benli
Department of Industrial Systems
California State University
Long Beach, CA 90840
obenli@csulb.edu

W. Art Chaovalitwongse
Department of Industrial and Systems Engineering
Rutgers University
Piscataway, NJ 08854
wchaoval@rci.rutgers.edu

Anthony Chen
Department of Civil Engineering
Utah State University
Logan, UT 84322-4110
achen@engineering.usu.edu

Weiwei Chen
Department of Industrial and Systems Engineering
University of Wisconsin-Madison
Madison, WI 53706
wchen26@wisc.edu

Clayton W. Commander
Air Force Research Laboratory
Munitions Directorate
Eglin AFB, FL 32542
clayton.commander@eglin.af.mil

Maged M. Dessouky
Department of Industrial and Systems Engineering
University of Southern California
Los Angeles, CA 90089
maged@usc.edu
Özlem Ergun
Department of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332-0100
oergun@isye.gatech.edu

Hafize G. Erkan
Department of Operations Research and Financial Engineering
Princeton University
Princeton NJ 08544
herkan@alumni.princeton.edu

Kevin C. Furman
Corporate Strategic Research
ExxonMobil Research and Engineering
Annandale, NJ 08801
kevin.c.furman@exxonmobil.com

Jing Gong
Department of Decision Sciences and Engineering Systems
Rensselaer Polytechnic Institute
Troy, NY 12180
gongj@rpi.edu

Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
grossmann@cmu.edu

Xiaozheng He
Department of Civil Engineering
University of Minnesota
Minneapolis, MN 55455
hexxx069@umn.edu

Michael J. Hirsch
Network Centric Systems
Raytheon Inc.
St. Petersburgh, FL 33710
michael_j_hirsch@Raytheon.com

Lori Houghtalen
Department of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332-0100
lhoughtalen@babson.edu

Marianthi Ierapetritou
Department of Chemical and Biochemical Engineering
Rutgers University
Piscataway, NJ 08854-8058
marianth@soemail.rutgers.edu

Jeffrey D. Kelly
Honeywell Process Solutions
85 Enterprise Blvd., Suite 100
Markham, ON, L6G0B5, Canada
Jeff.Kelly@honeywell.com

Earl E. Lee
Department of Civil and Environmental Engineering
University of Delaware
Newark, DE 19702
elee@udel.edu

Zukui Li
Department of Chemical and Biochemical Engineering
Rutgers University
Piscataway, NJ 08854-8058
zukui@eden.rutgers.edu

Zhe Liang
Department of Industrial and Systems Engineering
Rutgers University
Piscataway, NJ 08854
liangzhe@eden.rutgers.edu

Henry Liu
Department of Civil Engineering
University of Minnesota
Minneapolis, MN 55455
henryliu@umn.edu
Gokhan Metan
American Airlines
Fort Worth, TX 78155
gom204@lehigh.edu

Tan Miller
College of Business Administration
Rider University
Lawrenceville, NJ 08648-3001
tanjean@verizon.net

John E. Mitchell
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12180
mitchj@rpi.edu

John M. Mulvey
Department of Operations Research and Financial Engineering
Princeton University
Princeton NJ 08544
mulvey@princeton.edu

Fernando Ordóñez
Department of Industrial and Systems Engineering
University of Southern California
Los Angeles, CA 90089
fordon@usc.edu

Okan Orsan Ozener
Department of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332-0100
oozener@isye.gatech.edu

Panos M. Pardalos
Department of Industrial and Systems Engineering
University of Florida
Gainesville, FL 32611
pardalos@ufl.edu

Liang Pi
Department of Industrial and Systems Engineering
University of Wisconsin-Madison
Madison, WI 53706
1pi@wisc.edu

Matthew J. Realff
Department of Chemical and Biomolecular Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332-0100
matthew.realff@chbe.gatech.edu

Zhihong Shen
Department of Industrial and Systems Engineering
University of Southern California
Los Angeles, CA 90089
shenz@usc.edu

Leyuan Shi
Department of Industrial and Systems Engineering
University of Wisconsin-Madison
Madison, WI 53706
leyuan@engr.wisc.edu

Aurélie Thiele
Department of Industrial and Systems Engineering
Lehigh University
Bethlehem, PA 18015
aut204@lehigh.edu

William A. Wallace
Department of Decision Sciences and Engineering Systems
Rensselaer Polytechnic Institute
Troy, NY 12180
wallaw@rpi.edu

Danielle Zyngier
Honeywell Process Solutions
85 Enterprise Blvd., Suite 100
Markham, ON, L6G0B5, Canada
Danielle.Zyngier@honeywell.com