Mechanisms of Insulin Action

Alan R. Saltiel
Departments of Internal Medicine
and Physiology
Life Sciences Institute
The University of Michigan Medical Center
Ann Arbor, Michigan, U.S.A.

Jeffrey E. Pessin
Department of Pharmacological Sciences
State University of New York at Stony Brook
Stony Brook, New York, U.S.A.
CONTENTS

Preface .. xi

1. Insulin and IGF-I Receptor Structure and Binding Mechanism 1
 Pierre De Meyts, Waseem Sajid, Jane Palsgaard, Anne-Mette Jensen,
 Hassan Aladdin and Jonathan Whittaker
 Evolutionary Biology of the Insulin Peptide Family
 and Their Receptors ... 1
 Structure of the Insulin and IGF-I Receptor Genes
 and Predicted Protein Tertiary Structure .. 4
 Modular Receptor Structures Elucidated by X-Ray Crystallography ... 8
 Ligand Binding Properties .. 9
 Receptor Crosslinking with Bifunctional and Photoreactive Ligands ... 10
 Definition of Ligand Binding Specificity Using Chimeric
 Insulin/IGF-I Receptors .. 11
 Natural Receptor Mutations that Affect Insulin Binding
 in Syndromes of Extreme Insulin Resistance 11
 Mapping of Ligand Binding Sites on the Insulin and IGF-I
 Receptors by Site-Directed and Alanine-Scanning Mutagenesis 12
 Reconstitution of Modular Minimized Receptor Constructs
 with Low and High Affinity ... 13
 Attempts at Insulin Receptor Structure Definition by Electron
 Microscopy .. 16
 Mapping of Receptor-Binding Sites on the Insulin
 and IGF-I Molecules .. 17
 Mechanism of Ligand Binding and Receptor Activation 19
 Conclusions and a Word of Caution .. 22

2. Subcellular Compartmentalization of Insulin Signaling Processes
 and GLUT4 Trafficking Events .. 33
 Robert T. Watson, Alan R. Saltiel, Jeffrey E. Pessin
 and Makoto Kanzaki
 The Insulin Receptor and Its Immediate Downstream
 Substrate Proteins ... 34
 The PI3-Kinase Is Necessary for Insulin-Stimulated GLUT4
 Translocation .. 34
 Is There a Second Signaling Pathway Required
 for Insulin-Stimulated Glucose Uptake? 37
 The APS-CAP-Cbl Pathway Is Compartmentalized Within Plasma
 Membrane Microdomains ... 38
 TC10 Generates Spatially Compartmentalized Signals
 that Contribute to the Specificity of Insulin Action 39
 Downstream Targets of TC10 .. 40
 Sorting GLUT4 Into and Out of the Insulin-Responsive
 Storage Compartment ... 43
 Does Insulin Regulate the Intrinsic Transport Activity of GLUT4? 45
 Conclusions and Future Directions .. 46
3. Regulation of Insulin Action and Insulin Secretion by SNARE-Mediated Vesicle Exocytosis .. 52
 Debbie C. Thurmond
 Vesicle Exocytosis .. 52
 Insulin Action: GLUT4 Vesicle Translocation 55
 Insulin Exocytosis in Pancreatic Beta Cells 58
 Perspectives .. 62

4. Control of Protein Synthesis by Insulin .. 71
 Joseph F. Christian and John C. Lawrence, Jr.
 mRNA .. 71
 Ribosomes ... 74
 Initiation ... 75
 Elongation .. 80
 Termination .. 81
 The mTOR Signaling Pathway .. 81

5. Hepatic Regulation of Fuel Metabolism ... 90
 Catherine Clark and Christopher B. Newgard
 Glucose Transport ... 90
 Glycolysis ... 91
 Gluconeogenesis ... 97
 Glycogen Metabolism ... 101
 New Developments .. 104

6. Insulin Action Gene Regulation .. 110
 Calum D. Sutherland, Richard M. O'Brien and Daryl K. Granner
 Insulin Signal Transduction and Gene Expression 113
 Key Insulin-Regulated Gene Promoters 120
 Coordinated Regulation of PEPCK, G6Pase, IGFBP-1
 and TAT Gene Expression? .. 123

7. Insulin Action in the Islet β-Cell .. 133
 Rohit N. Kulkarni
 Embryonic and Early Post-Natal Development
 of the Endocrine Pancreas .. 135
 Global and Conditional Knockouts of Insulin, IGF-I, IGF-II,
 and Proteins in Their Signaling Pathways 137
 Maintenance of Adult β-Cell Mass 140
 Growth and Development of Islet α-Cells 143
 The Liver-Pancreas Connection ... 144
 Future Insights ... 145
8. **Central Regulation of Insulin Sensitivity** ... 152
 Silvana Obici and Luciano Rossetti
 - Insulin Action in the Hypothalamus .. 154
 - Central Effects of Leptin on Insulin Sensitivity 158
 - Hypothalamic Lipid Sensing .. 161

9. **Transgenic Models of Impaired Insulin Signaling** 168
 Francesco Oriente and Domenico Accili
 - Insulin Receptor Knockout ... 168
 - Conditional *Insulin Receptor* Knockouts ... 169
 - Mutations Affecting Insulin Receptor Signaling 173
 - Gene Knockouts Associated with Increased Insulin Sensitivity 177

10. **Insulin Resistance** ... 185
 C. Hamish Courtney and Jerrold M. Olefsky
 - Methods of Assessing Insulin Sensitivity ... 185
 - Insulin Resistance in Type 2 Diabetes Mellitus and Obesity 187

Index ... 211
We now know that the pathophysiology of Type 2 diabetes involves defects in three organ systems that conspire together to produce abnormal glucose and lipid metabolism. While there is some uncertainty regarding the primary lesion, or relative importance of different tissues, metabolic defects in liver, peripheral target tissues such as fat and muscle and pancreatic β cells all contribute to the syndrome. Insulin resistance, which is defined as a state of reduced responsiveness to normal circulating concentrations of insulin, is now recognized as a characteristic trait of Type 2 diabetes, and contributes to abnormalities in all of these tissues. Even in the absence of diabetes, insulin resistance is a key feature of other human disease states. These findings suggest that studies on the molecular mechanisms underlying insulin action are crucial to further the understanding of this devastating disease. Thus, we have gathered together several renowned experts in this field to produce this monograph *Mechanisms of Insulin Action*.

These articles provide novel insight into the key issues underlying the molecular biology of insulin action and insulin resistance. De Meyts et al cover the structure and function of insulin and insulin-like growth factor receptors. Watson and colleagues outline the important events at the intersection of signal transduction and vesicle trafficking that are crucial to the stimulation of glucose uptake by insulin. Thurmond reviews the important events that occur when GLUT4 vesicles dock and fuse at the plasma membrane. Christian and Lawrence comment on the mechanisms responsible for the regulation of protein synthesis by insulin, while Clark and Newgard review those mechanisms responsible for changes in hepatic fuel metabolism. Because gene expression is so important in metabolism, Sutherland et al outline the steps that are involved in the regulation of transcription by insulin. As the primary event in metabolic control, Kulkarni describes how the beta cell is regulated by insulin, and in related work, Obici and Rossetti cover the central control of peripheral insulin sensitivity. Much progress on studies in insulin action have been made in animal models, and Oriente and Accili review transgenic and knock out models of insulin action and resistance. Finally, Courtney and Olefsky review the occurrence and treatment of insulin resistance. Together, these authors have provided a comprehensive summary of our understanding of insulin action from cellular physiology to the integration of tissue specific signaling events that are responsible for whole body glucose homeostasis.

Alan Saltiel

Jeffrey Pessin