FOOD-BORNE PARASITIC ZOONOSES
Volumes in the *World Class Parasites* book series are written for researchers, students and scholars who enjoy reading about excellent research on problems of global significance. Each volume focuses on a parasite, or group of parasites, that has a major impact on human health, or agricultural productivity, and against which we have no satisfactory defense. The volumes are intended to supplement more formal texts that cover taxonomy, life cycles, morphology, vector distribution, symptoms and treatment. They integrate vector, pathogen and host biology and celebrate the diversity of approach that comprises modern parasitological research.

Series Editors
Samuel J. Black, *University of Massachusetts, Amherst, MA, U.S.A.*
J. Richard Seed, *University of North Carolina, Chapel Hill, NC, U.S.A.*
FOOD-BORNE PARASITIC ZOONOSES
Fish and Plant-Borne Parasites

edited by

K. Darwin Murrell

and

Bernard Fried
Preface

Humans suffer from numerous parasitic foodborne zoonoses, many of which are caused by helminths. The helminth zoonoses of concern in this book are normally limited to diseases of animals that have now become transmissible to humans. In the past, these diseases were limited to populations living in low- and middle-income countries, but the geographical limits and populations at risk are expanding and changing because of growing international markets, improved transportation systems, and demographic changes (such as population movements). The World Health Organization (WHO) has estimated the number of people currently infected with just foodborne trematodes exceeds 41 million, and the number of people at risk worldwide, including those in developed countries, is 750 million. The increasing recognition of the public health significance of these zoonoses, their complicated epidemiology, and their links to poverty, agricultural intensification, environmental degradation, and lack of appropriate tools for control has been welcome. However, because the development of priorities in a national public health system is often a competitive exercise, the claim for more attention and resources for foodborne parasitic zoonoses is usually handicapped by a lack of reliable health and economic impact data. The genesis of this book, then, was a desire to draw attention to the problem of these zoonoses and, hopefully, to inspire greater efforts to acquire a reliable global impact assessment which would strengthen the efforts to develop improved prevention and control actions for these zoonoses.

The list of potential helminth zoonoses that might be discussed in a book such as this is large, and could include all those transmitted by ingestion of any food such as meat, fish, invertebrates and plants. However, we have chosen to focus on those zoonoses that are the least under appreciated and recognized of the foodborne helminths, the fish, plant and invertebrate-borne helminths. While people, especially those living in developed countries, are commonly aware of meat-borne zoonoses such as trichinellosis and cysticercosis, fewer are acquainted with fish-borne parasitic diseases like opisthorchiasis, intestinal trematodiasis or capillarisis. Yet these zoonoses are responsible for large numbers of human infections. For example, at least 10 million people in China are infected with the fish-borne liver fluke *Clonorchis sinensis*, and at least 7 million in Thailand are infected with the
species *Opisthorchis viverrini*, both of which are associated with liver cancer. The intestinal flukes are even more common throughout Asia, Russia, and the Middle East.

Compared to other parasitic diseases such as malaria, filariasis, and schistosomiasis, these parasitic zoonoses are public health “orphans” in the world of research funding, due in no small measure to insufficient appreciation of a crucial fact: that most of them exist as a complex of parasites whose transmission often depends on well-entrenched cultural behaviors that are difficult to change. Because the transmission routes to human infection are similar, collectively these zoonoses may have a much greater effect in the aggregate than as single infections. The difficulties of diagnosis, the complexities of human cultural traits and agricultural practices and the lack of realistic assessments of their real or potential economic costs, have made this field simultaneously daunting, scientifically obscure and, therefore, unattractive to investigators. The challenge of developing a prevention and control strategy that accommodates strong cultural and agricultural traditions, however, will test the imaginations and skills of researchers, an intellectual challenge that could provide the stimulation needed to build a more concerted international effort toward control.

This book reviews not only the prevalence and distribution of these zoonoses, including available health and economic impact data, but will highlights gaps in knowledge that must be filled in order to gain the assessment needed to depict the overall importance of a particular zoonosis. This is critical for comparisons to other pressing public health and development needs in resource allocations. The topics on epidemiology, diagnosis, and clinical aspects emphasize the knowledge gaps that limit a full understanding of these zoonoses, and target where greater research investments on these parasitic diseases should be focused.
Contents

Preface ... v

Contributors ... ix

Part I: Fish- and Invertebrate-Borne Parasites

1. Liver Flukes ... 3
 Paiboon Sithithaworn, Puangrat Yongvanit,
 Smarn Tesna, and Chawalit Pairojkul

2. Intestinal Flukes ... 53
 Jong-Yil Chai

3. Paragonimiasis .. 117
 David Blair, Takeshi Agatsuma, and Wenlin Wang

4. Diphyllobothriasis: The Diphyllobothrium latum Human Infection
 Conundrum and Reconciliation with a Worldwide Zoonosis 151
 Terry A. Dick

5. Anisakid Nematodes and Anisakiasis 185
 A.J. Lymbery and F.Y. Cheah

6. Capillarisis ... 209
 J.H. Cross and V. Belizario

7. Gnathostomiasis .. 235
 J. Waikagul and S. Paz Diaz Chamacho

8. Angiostrongyliasis ... 263
 E.R. Chen and J. Cross
Contents

Part II: Plant-Borne Parasites

9. Plant-Borne Trematode Zoonoses: Fascioliasis and Fasciolopsiasis .. 293
 Santiago Mas-Coma, Maria Dolores Bargues, and Maria Adela Valero

Part III: General Aspects of Infection

10. Immunology of the Infection .. 337
 Haruhiko Maruyama and Yukifumi Nawa

11. Molecular Epidemiology of Food-Borne Parasitic Zoonoses 383
 R.C. Andrew Thompson, Rebecca J. Traub, and Nevi Parameswaran

Index ... 417
Contributors

Takeshi Agatsuma
Department of Environmental Health Science
Kochi Medical School
Oko, Nankoku City
Kochi 783-8505
Japan

Maria Dolores Bargues
Department of Parasitology
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia
Spain

V. Belizario
Department of Parasitology
College of Public Health
University of the Philippines Manila
Manila, Philippines

David Blair
School of Marine and Tropical Biology
James Cook University
Townsville, Queensland 4811
Australia

Jong-Yil Chai
Department of Parasitology and Tropical Medicine
Seoul National University College of Medicine
Institute of Endemic Diseases
Seoul National University Medical Research Center
Seoul 110-799, Korea
S. Paz Diaz Chamacho
Department of Public Health Research “Louis Pasteur”
Faculty of Chemical and Biological Sciences
Universidad Autonoma de Sinaloa
Culiacán, Sinaloa, Mexico

F.Y. Cheah
Fish Health Unit
School of Veterinary and Biomedical Sciences
Murdoch, Western Australia 6150
Australia

E.R. Chen
Department of Parasitology
Kaohsiung Medical University
Kaohsiung, Taiwan, R.O.C.

J. H. Cross
Department of Preventive Medicine and Biometrics
Uniformed Services University of the Health Sciences
Bethesda, MD

Terry A. Dick
Department of Zoology
University of Manitoba
Winnipeg, Manitoba
Canada

Bernard Fried
Department of Biology
Lafayette College
Easton, PA USA

A.J. Lymbery
Fish Health Unit
School of Veterinary and Biomedical Sciences
Murdoch, Western Australia 6150
Australia

Haruhiko Maruyama
Division of Parasitology
Department of Infectious Diseases
Faculty of Medicine
University of Miyazaki
Kiyotake 889-1692, Japan
Santiago Mas-Coma
Department of Parasitology
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia
Spain

K.Darwin Murrell
Danish Centre for Experimental Parasitology
Department of Veterinary Pathobiology
Faculty of Life Sciences
Copenhagen University
Denmark

Yukifumi Nawa
Division of Parasitology
Department of Infectious Diseases
Faculty of Medicine
University of Miyazaki
Kiyotake 889-1692, Japan

Chawalit Pairojkul
Department of Pathology
Liver Fluke and Cholangiocarcinoma Research Center
Faculty of Medicine
Khon Kaen University
Khon Kaen, 40002
Thailand

Nevi Parameswaran
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections
School of Veterinary and Biomedical Sciences
Murdoch University, WA 6150, Australia

Paiboon Sithithaworn
Department of Parasitology
Liver Fluke and Cholangiocarcinoma Research Center
Faculty of Medicine
Khon Kaen University
Khon Kaen, 40002
Thailand
Smarn Tesana
Department of Parasitology
Liver Fluke and Cholangiocarcinoma Research Center
Faculty of Medicine
Khon Kaen University
Khon Kaen, 40002
Thailand

RC Andrew Thompson
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections
School of Veterinary and Biomedical Sciences
Murdoch University, WA 6150, Australia

Rebecca J Traub
School of Veterinary Science
University of Queensland
St Lucia, QLD 4072
Australia

Maria Adela Valero
Department of Parasitology
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia
Spain

Wenlin Wang
Department of Parasitology
Kunming Medical College
Kunming, Yunnan 650031
P.R. China

J. Waikagul
Department of Helminthology
Faculty of Tropical Medicine
Mahidol University
Bangkok, Thailand

Puangrat Yongvanit
Department of Biochemistry
Liver Fluke and Cholangiocarcinoma Research Center
Faculty of Medicine
Khon Kaen University
Khon Kaen, 40002
Thailand