This volume is dedicated to our colleagues
James T. Staley and George M. Garrity,
who retired from the Board of Trustees of Bergey’s Manual Trust
during preparation of this volume.
We deeply appreciate their efforts as editors, authors and officers of the Trust.
They have devoted many years to helping
the Trust meet its objectives.
EDITORIAL BOARD AND TRUSTEES
OF BERGEY'S MANUAL TRUST

Michael Goodfellow, Chairman
Peter Kämpfer, Vice Chairman
Paul De Vos
Frederick Rainey
Karl-Heinz Schleifer
William B. Whitman

Don J. Brenner, Emeritus
Richard W. Castenholz, Emeritus
George M. Garrity, Emeritus
John G. Holt, Emeritus
Noel R. Krieg, Emeritus
John Liston, Emeritus
James W. Moulder, Emeritus
R.G.E. Murray, Emeritus
Peter H. A. Sneath, Emeritus
James T. Staley, Emeritus
Joseph G. Tully, Emeritus
A number of important changes occurred at Bergey’s Manual Trust during the preparation of this volume. In 2006, George Garrity retired from the Trust, and the Trust moved its offices from Michigan State University to the University of Georgia. We are deeply indebted to Professor Garrity, under whose supervision much of this volume was prepared. James T. Staley’s wise council guided this transition until he retired from the Trust in 2008 after 32 years of service.

The officers of the Trust have also changed during this time. Barny Whitman became Treasurer and Director of the Editorial Office in 2006. Michael Goodfellow succeeded Professor Staley as Chair in 2008 and Peter Kämpfer succeeded Professor Goodfellow as Vice-Chair in 2008. The Trust was also fortunate to acquire the services of Dr Aidan Parte as Managing Editor in 2007.

Much as things have changed, prokaryotic systematics has remained a vibrant and exciting field of study, one of challenges and opportunities, great discoveries and gradual advances. To honor the leaders of our field, the Trust presented the Bergey Award in recognition of outstanding contributions to the taxonomy of prokaryotes to Jean Paul Euzéby (2005), David P. Labeda (2006), and Jürgen Wiegel (2008). In recognition of life-long contributions to the field of prokaryotic systematics, the Bergey Medal was presented to Richard W. Castenholz (2005), Kazau Komagata (2005), Klaus P. Schaal (2006), Fergus Priest (2008), and James T. Staley (2008).

Acknowledgements

The Trust is indebted to all of the contributors and reviewers, without whom this work would not be possible. The Editors are grateful for the time and effort that each has expended on behalf of the entire scientific community. We also thank the authors for their good grace in accepting comments, criticisms, and editing of their manuscripts.

The Trust recognizes its enormous debt to Dr Aidan Parte, whose enthusiasm and professionalism have made this work possible. His expertise and good judgment have been extremely valued.

We also recognize the special efforts of Dr Jean Euzéby and Professor Aharon Oren for their assistance on the nomenclature and etymologies.

We also thank the Department of Microbiology at Michigan State University and especially Connie Williams, for her assistance in bring this volume to completion, and Walter Esselman, the Chair of the Department of Microbiology and Molecular Genetics, who facilitated our move to the University of Georgia. We thank our current copyeditors, proofreaders and other staff, including Susan Andrews, Joanne Auger, Frances Brenner, Robert Gutman, Judy Leventhal, Linda Sanders and Travis Dean, whose hard work and attention to detail have made this volume possible. Lastly, we thank the Department of Microbiology at the University of Georgia for its assistance and encouragement in thousands of ways.

William B. (Barny) Whitman
Contents

Contributors .. xvi
On using the *Manual* .. xxi
Revised road map to the phylum *Firmicutes* 1
Taxonomic outline of the phylum *Firmicutes* 15

Phylum XIII. *Firmicutes* ... 19
Class I. “Bacilli” .. 19
Order I. *Bacillales* ... 19
Family I. *Bacillaceae* .. 20
 Genus I. *Bacillus* ... 21
 Genus II. *Alkalibacillus* ... 128
 Genus III. *Amphibacillus* .. 130
 Genus IV. *Anoxybacillus* ... 134
 Genus V. *Cerasibacillus* ... 141
 Genus VI. *Filobacillus* ... 142
 Genus VII. *Geobacillus* ... 144
 Genus VIII. *Gracilibacillus* ... 160
 Genus IX. *Halobacillus* ... 164
 Genus X. *Halolactibacillus* .. 168
 Genus XI. *Lentibacillus* .. 175
 Genus XII. *Marinococcus* ... 178
 Genus XIII. *Oceanobacillus* .. 181
 Genus XIV. *Paraliobacillus* .. 185
 Genus XV. *Pontibacillus* ... 189
 Genus XVI. *Saccharococcus* .. 190
 Genus XVII. *Tenuibacillus* .. 191
 Genus XVIII. *Thalassobacillus* ... 193
 Genus XIX. *Virgibacillus* ... 193
Family II. “*Alicyclobacillaceae*” .. 229
 Genus I. *Alicyclobacillus* .. 229
Family III. “*Listeriaceae*” .. 244
 Genus I. *Listeria* ... 244
 Genus II. *Brochothrix* .. 257
Family IV. “*Paenibacillaceae*” .. 269
 Genus I. *Paenibacillus* .. 269
 Genus II. *Ammoniphilus* .. 296
 Genus III. *Aeurinibacillus* ... 298
 Genus IV. *Brevibacillus* .. 305
 Genus V. *Cohnella* ... 316
 Genus VI. *Oxalophagus* ... 320
 Genus VII. *Thermobacillus* ... 321
Family V. *Pasteuriaceae* ... 328
 Genus I. *Pasteuria* ... 328
Family VI. *Planococaceae* .. 348
 Genus I. *Planococcus* .. 348
 Genus II. *Caryophanum* ... 354
 Genus III. *Filibacter* .. 359
 Genus IV. *Jeotgalibacillus* ... 364
 Genus V. *Kurthia* ... 364
 Genus VI. *Marinibacillus* ... 370
 Genus VII. *Planomicrobium* .. 373
 Genus VIII. *Sporosarcina* ... 377
 Genus IX. *Ureibacillus* .. 381
Family VII. “*Sporolactobacillaceae*” .. 386
 Genus I. *Sporolactobacillus* .. 386
Family VIII. “*Staphylococcaceae*” .. 392
 Genus I. *Staphylococcus* ... 392
 Genus II. *Jeotigalicoccus* ... 421
 Genus III. *Macroccocus* .. 422
 Genus IV. *Salinicoccus* .. 426
Family IX. “*Thermoactinomycetaceae*” 434
 Genus I. *Thermoactinomyces* .. 443
 Genus II. *Laceyella* ... 444
 Genus III. *Mechercharimycetes* .. 445
 Genus IV. *Planifilum* .. 446
 Genus V. *Seinonella* ... 447
 Genus VI. *Shimazuella* .. 448
 Genus VII. *Thermoflavimicrobium* ... 449
Family X. “*Incertae Sedis*” ... 454
 Genus I. *Thermicanus* .. 454
Family XI. “*Incertae Sedis*” .. 455
 Genus I. *Gemella* ... 455
Family XII. “*Incertae Sedis*” ... 460
 Genus I. *Exiguobacterium* .. 460
Order II. “*Lactobacillales*” ... 464
Family I. *Lactobacillaceae* .. 465
 Genus I. *Lactobacillus* .. 465
 Genus II. *Paralactobacillus* .. 511
 Genus III. *Pediococcus* .. 513
Family II. “*Aerococcaceae*” .. 533
 Genus I. *Aerococcus* .. 533
 Genus II. *Abiotrophia* .. 536
 Genus III. *Dolosicoccus* ... 538
 Genus IV. *Eremococcus* .. 540
 Genus V. *Facklamia* ... 541
 Genus VI. *Globicatella* .. 544
 Genus VII. *Ignavigranum* .. 546
Family III. “*Carnobacteriaceae*” .. 549
 Genus I. *Carnobacterium* .. 549
 Genus II. *Alkalibacterium* ... 557
 Genus III. *Allofustis* ... 559
 Genus IV. *Alloioococcus* ... 562
 Genus V. *Atopobacter* ... 563
 Genus VI. *Atopococcus* .. 565
 Genus VII. *Atopostipes* .. 566
 Genus VIII. *Desemzia* ... 568
Class II. "Clostridia"

Order I. Clostridiales

Family I. Clostridiaceae

Genus I. Clostridium
Genus II. Alkaliphilus
Genus III. Anaerobacter
Genus IV. Anoxyronatronum
Genus V. Caloramator
Genus VI. Caloranaerobacter
Genus VII. Caminicella
Genus VIII. Natronincola
Genus IX. Oxobacter
Genus X. Sarcina
Genus XI. Thermobrachium
Genus XII. Thermohalobacter
Genus XIII. Tindallia

Family II. "Eubacteriaceae"

Genus I. Eubacterium
Genus II. Acetobacterium
Genus III. Alkalibacter
Genus IV. Anaerofustis
Genus V. Garcieilla
Genus VI. Pseudoramibacter

Family III. "Gracilibacteraceae"

Genus I. Gracilibacter

Family IV. "Heliobacteriaceae"

Genus I. Heliobacterium
Genus II. Heliobacillus
Genus III. Heliophilum
Genus IV. Heliorestis

Family V. "Lachnospiraceae"

Genus I. Lachnospira
Genus II. Acetitomaculum
Genus III. Anaerostipes
Genus IV. Bryantella
Genus V. Butyrivibrio
Genus VI. Catonella

Family VI. Streptococcaceae

Genus I. Streptococcus
Genus II. Lactococcus
Genus III. Lactobacillus

Family VII. Alkaliphilus

Genus I. Pseudoramibacter

Family VIII. Natronincola

Genus I. Lachnospira
Genus II. Acetitomaculum
Genus III. Anaerostipes
Genus IV. Bryantella
Genus V. Butyrivibrio
Genus VI. Catonella
Family VIII. **Ruminococccaeae**

Genus I. *Ruminococcus* .. 1016
Genus II. *Acetanaerobacterium* 1019
Genus III. *Acetivibrio* .. 1020
Genus IV. *Anaerofilum* .. 1022
Genus V. *Anaerotruncus* .. 1023
Genus VI. *Faecalibacterium* ... 1026
Genus VII. *Fastidiosipila* .. 1028
Genus VIII. *Oscillospira* ... 1031
Genus IX. *Papillibacter* .. 1033
Genus X. *Sporobacter* .. 1034
Genus XI. *Subdoligranulum* ... 1037

Family IX. **Syntrophomonadaceae**

Genus I. *Syntrophomonas* .. 1044
Genus II. *Pelospora* ... 1045
Genus III. *Syntrophospora* ... 1052
Genus IV. *Syntrophothermus* .. 1053
Genus V. *Thermosyntropha* ... 1055

Family X. **Veillonellaceae**

Genus I. *Veillonella* .. 1059
Genus II. *Acetonema* .. 1065
Genus III. *Acidaminococcus* .. 1067
Genus IV. *Allisonella* .. 1068
Genus V. *Anaeroarcus* ... 1069
Genus VI. *Anaeroglobus* .. 1071
Genus VII. *Anaeromusa* .. 1073
Genus VIII. Anaerosinus .. 1074
Genus IX. Anaerovibrio ... 1075
Genus X. Centipeda ... 1077
Genus XI. Dendrosporobacter .. 1079
Genus XII. Dialister .. 1080
Genus XIII. Megasphaera ... 1082
Genus XIV. Mitsuokella ... 1090
Genus XV. Pectinatus .. 1094
Genus XVI. Phascolarctobacterium .. 1100
Genus XVII. Propionispira .. 1102
Genus XVIII. Propionispora ... 1103
Genus XIX. Quinella ... 1104
Genus XX. Schwartzia ... 1105
Genus XXI. Selenomonas .. 1106
Genus XXII. Sporomusa ... 1112
Genus XXIII. Succiniclasticum ... 1116
Genus XXIV. Succinispira .. 1117
Genus XXV. Thermosinus ... 1118
Genus XXVI. Zymophilus ... 1119
Family XI. Incertae Sedis ... 1130
Genus I. Anaerococcus ... 1130
Genus II. Finegoldia ... 1131
Genus III. Gallicola .. 1132
Genus IV. Helcococcus .. 1132
Genus V. Parvimonas .. 1135
Genus VI. Peptoniphilus .. 1136
Genus VII. Sedimentibacter .. 1137
Genus VIII. Soehngenia .. 1141
Genus IX. Sporanaerobacter ... 1143
Genus X. Tissierella .. 1146
Family XII. Incertae Sedis ... 1150
Genus I. Acidaminobacter ... 1150
Genus II. Fusibacter .. 1151
Genus III. Guggenheimella .. 1154
Family XIII. Incertae Sedis ... 1156
Genus I. Anaerovorax .. 1156
Genus II. Mogibacterium ... 1157
Family XIV. Incertae Sedis ... 1161
Genus I. Anaerobranca ... 1161
Family XV. Incertae Sedis .. 1165
Genus I. Aminobacterium ... 1165
Genus II. Aminomonas ... 1167
Genus III. Anaerobaculum ... 1170
Genus IV. Dethiosulfobacterium ... 1174
Genus V. Thermaerovibrio ... 1176
Family XVI. Incertae Sedis ... 1180
Genus I. Carboxydocella ... 1180
Family XVII. Incertae Sedis .. 1181
Genus I. Sulfobacillus .. 1181
Genus II. Thermoautobacter ... 1184
Family XVIII. Incertae Sedis ... 1188
Genus I. Symbiobacterium .. 1188
Family XIX. Incertae Sedis .. 1190
Genus I. Acetoanaerobiun ... 1190
Order II. Halanaerobiales .. 1191
Family I. Halanaerobiaceae .. 1195
 Genus I. Halanaerobium .. 1196
 Genus II. Halocella ... 1201
 Genus III. Halothermothrix 1202
Family II. Halobacteroidaceae 1207
 Genus I. Halobacteroides 1208
 Genus II. Acetohalobium 1209
 Genus III. Halanaerobacter 1212
 Genus IV. Halonatronum 1215
 Genus V. Natroniella .. 1216
 Genus VI. Orenia .. 1217
 Genus VII. Selenihalanaerobacter 1221
 Genus VIII. Sporohalobacter 1222
Order III. Thermoanaerobacterales 1224
Family I. Thermoanaerobacteraceae 1225
 Genus I. Thermoanaerobacter 1225
 Genus II. Ammonifex .. 1240
 Genus III. Caldanaerobacter 1241
 Genus IV. Carboxydothermus 1244
 Genus V. Gelria .. 1246
 Genus VI. Moorella .. 1247
 Genus VII. Thermacetogenium 1253
 Genus VIII. Thermaanaeromonas 1256
Family II. Thermodesulfobiaceae 1268
 Genus I. Thermodesulfobium 1268
 Genus II. Coprothermobacter 1271
Family III. Incertae Sedis 1275
 Genus I. Caldicellulosiruptor 1275
 Genus II. Thermoanaerobacterium 1279
 Genus III. Thermosediminibacter 1287
 Genus IV. Thermoenvabulum 1290
Family IV. Incertae Sedis 1296
 Genus I. Mahella ... 1296
Class III. Erysipelotrichia 1298
Order I. Erysipelotrichales 1298
Family I. Erysipelotrichaceae 1299
 Genus I. Erysipelothrix 1299
 Genus II. Allobaculum 1306
 Genus III. Bulleidia ... 1307
 Genus IV. Catenibacterium 1309
 Genus V. Coprobacillus 1310
 Genus VI. Holdemania 1310
 Genus VII. Solobacterium 1312
 Genus VIII. Turicibacter 1314

Index .. 1423
Contributors

Didier Alazard
IRD, UMR 180, Universités de Provence et de la Méditerranée, ESIL case 925, 163 avenue de Luminy, 13288 Marseille cedex 09, France
didier.alazard@univmed.fr

Luciana Albuquerque
Department of Zoology and Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
luciana@cnc.uc.pt

Marie Asao
Southern Illinois University, Department of Microbiology, Mail Stop 6508, Carbondale, IL 62901-4399, USA
asao@micro.siu.edu

Sandra Baena
Departamento de Biología, Pontificia Universidad Javeriana, AA 56710 SantaFe de Bogotá, Colombia
baena@javeriana.edu.co

Georges Barbier
Université Européenne de Bretagne/Université de Brest, EA3882 Laboratoire Universitaire de Biodiversité et Écologie Microbienne, IFR148 ScInBioS, ESMISAB, Technopôle de Brest Iroise, 29280 Plouzané, France
georges.barbier@univ-brest.fr

Julia A. Bell
Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
bellj@msu.edu

Yoshimi Benno
Japan Collection of Microorganisms, Microbe Division, RIKEN BioResource Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
benno@jcm.riken.jp

Teruhiko Beppu
Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
beppu@amail.brs.nihon-u.ac.jp

Hanno Biebl
National Research Centre for Biotechnology, Mascheroder Weg 1, GFB German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
hannoebiebl@web.de

George W. Bird
Department of Entomology, 243 Natural Science, E. Lansing, MI 48824, USA
bird@msue.msu.edu

Johanna Björkroth
Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Helsinki University, P.O. Box 57, FI-00014 Helsinki, Finland
johanna.bjorkroth@helsinki.fi

Michael Blaut
Department of Gastrointestinal Microbiology, Arthur-Scheunert-Allee 114-116, German Institute of Human Nutrition, D-14553 Bergholz-Rehbrücke, Germany
blaut@mail.dife.de

Monica Bonilla-Salinas
Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands

Philipp P. Bosshard
Institute of Medical Microbiology, Gloriistrasse 30/32, University of Zürich, CH-8028 Zürich, Switzerland
philboss@immv.unizh.ch

Wolfgang Buckel
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
buckel@staff.uni-marburg.de

Hans-Jürgen Busse
Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, Veterinärplatz 1, A-1210 Wien, Austria
Hans-Juergen.Busse@vu-wien.ac.at

Ercole Canale-Parola
Department of Microbiology, University of Massachusetts, Amherst, MA 01003-0013, USA

Jean-Philippe Carlier (Deceased)
Centre National de Référence Pour les Bactéries Anaérobies et le Botulisme, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris Cedex 15, France

Jean-Luc Cayol
Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la Méditerranée, 163 Avenue de Luminy, Case 925, 13288 Marseille Cedex 09, France
jean-luc.cayol@univmed.fr

Dieter Claus
Chemnitzer Strasse 3, 37085 Göttingen, Germany
dclaus@gmx.net

Matthew D. Collins
Department of Food Science and Technology, The University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, UK
Gregory M. Cook
Department of Microbiology and Immunology,
Otago School of Medical Sciences, University of Otago,
P.O. Box 56, Dunedin, New Zealand
greg.cook@stonebow.otago.ac.nz

Nancy A. Cornick
Veterinary Microbiology and Preventative Medicine,
2180 Veterinary Medicine, College of Veterinary Medicine,
Iowa State University, Ames, IA 50011, USA
ncornick@biostate.edu

Michael A. Cotta
USDA/ARS, National Center for Agricultural Utilization
Research, 1815 N. University Street, Peoria, IL 61604, USA
Mike.Cotta@ars.usda.gov

Milton S. da Costa
Departamento de Bioquímica, Universidade de Coimbra,
3001-401 Coimbra, Portugal
milton@ci.uc.pt

Elke De Clerck
Milliken Europe N.V., Ham 18–24, B-9000 Gent, Belgium

Paul De Vos
Laboratory for Microbiology, University of Ghent,
K. L. Ledeganckstraat, 35, B-9000 Gent, Belgium
Paul.DeVos@ugent.be

Luc A. Devriese
Laboratory of Veterinary Bacteriology and Mycology,
Faculty of Veterinary Medicine, University of Ghent,
Salisburylaan 133, B-9820 Merelbeke, Belgium
devriese.okerman@skynet.be

Dhiraj P. Dhotre
National Centre for Cell Science, Pune University Campus,
Ganeshkhind, Pune 411 007, India
dheerajdhotre@gmail.com

Leon M. T. Dicks
Department of Microbiology, Private Bag X1, 7602 Matieland
(Stellenbosch), South Africa
LMTD@sun.ac.za

Donald W. Dickson
Bldg. 970, Natural Area Drive, University of Florida,
Gainesville, FL 32611-0620, USA
dw@uf.edu

Abhijit S. Dighe
Orthopaedic Surgery Research Center, Room B 035,
Cobb Hall, P.O. Box 800374, University of Virginia (UVA),
Charlottesville, VA 22908, USA
asd2n@virginia.edu

Anna E. Dinsdale
Department of Biological and Biomedical Sciences,
Glasgow Caledonian University, Cowcaddens Road,
Glasgow G4 0BA, UK
Anna.Dinsdale@gcal.ac.uk

Xiuzhu Dong
No. 3A, Datun Road, Chaoyang District, Beijing 100101, China
dongzx@sun.im.ac.cn

Julia Downes
Floor 28, Guy’s Tower, Department of Microbiology, King’s
College London, Guy’s Hospital, London SE1 9RT, UK
juh downes@kcl.ac.uk

Harold L. Drake
Department of Ecological Microbiology, University of Bayreuth,
Dr-Hans-Frisch-Strasse 1-3, D-95440 Bayreuth, Germany
hld@uni-bayreuth.de

Sylvia H. Duncan
Microbial Ecology Group, Rowett Institute of Nutrition and Health,
University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
S.Duncan@rowett.ac.uk

Dieter Ebert
Evolutionsbiologie, Zoologisches Institut, Universität Basel,
CH 4051 Basel, Switzerland
dieter.ebert@unibas.ch

Erikk Eerola
Department of Medical Microbiology, University of Turku,
Turku, Finland
erkki.eerola@utu.fi

Jean P. Euzéby
Ecole Nationale Vétérinaire, 23 chemin des Capelles,
B.P. 87614, 31076 Toulouse cedex 3, France
euzéby@bacterio.org

Takayuki Ezaki
Department of Microbiology, 40 Tsukasa-machi,
Gifu University School of Medicine, Gifu 500-8705, Japan
etzaki@gifu-u.ac.jp

Enevold Falsen
Guldhedsqatan 10, University of Goteburg,
S-41346 Goteborg, Sweden
falsen@ccug.gu.se

Marie-Laure Fardeau
Laboratoire de Microbiologie IRD, UMR 180, Universités
de Provence et de la Méditerranée, 163 Avenue de Lumiery,
Case 925, 13288 Marseille Cedex 09, France
marie-laure.fardeau@univmed.fr

Harry J. Flint
Microbial Ecology Group, Rowett Institute of Nutrition and Health,
University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
H.H.Flint@rowett.ac.uk

Charles M. A. P. Franz
Max Rubner Institute, Department of Safety and Quality of
Fruits and Vegetables, Haid-und-Neu-Strasse 9,
D-76131 Karlsruhe, Germany
Charles.Franz@mri.bund.de

Michael W. Friedrich
Max Planck Institute for Terrestrial Microbiology,
Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
michael.friedrich@mpi-marburg.mpg.de

Dagmar Fritze
DSM - Deutsche Sammlung von Mikroorganismen und
Zellkulturen, Inhoffenstrasse 7 B, D-38124 Braunschweig,
Germany
df@dsmz.de

Tateo Fujii
4-5-7 konan, Minato-ku, Tokyo University of Marine Science
and Technology, Tokyo 108-8477, Japan
tfujii@tokyo-u-fish.ac.jp

Jean-Louis Garcia
Laboratoire de Microbiologie IRD, UMR 180, Universités
de Provence et de la Mediterranée, 163 Avenue de Luminy,
Case 925, 13288 Marseille Cedex 09, France
garcia@esil.univ-mrs.fr

Elena S. Garnova
Laboratory of Relict Microbial Communities, Institute of
Microbiology, Russian Academy of Science (RAS),
Prospect 60-lei Oktyabrya 7/2, 117312 Moscow, Russia
egarnova@yahoo.com
Robin M. Giblin-Davis
University of Florida IFAS, Ft. Lauderdale Research and Education Center, 3205 College Avenue, Ft. Lauderdale, FL 33314-7799, USA
giblin@ufl.edu

Michael Goodfellow
Department of Microbiology, The Medical School, University of Newcastle-upon-Tyne, Framlington Place, Newcastle-upon-Tyne NE1 7RU, UK
M.Goodfellow@newcastle.ac.uk

Anita S. Gössner
Department of Ecological Microbiology, University of Bayreuth, Dr.-Hans-Frisch-Strasse 1-3, D-95440 Bayreuth, Germany
a.goessner@uni-bayreuth.de

Isabelle Grech-Mora
Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la Méditerranée, 163 Avenue de Luminy, Case 925, 13288 Marseille Cedex 99, France

Auli Haikara
Biotekniikan Laboratory, P.O. Box 1500, Valtion Teknillinen Tutkimuskeskus, Tietotie 2, Espoo FIN-02044 VTT, Finland
auli.haikara@kolumbus.fi

Walter P. Hammes
Talstr. 60/1, D-70794 Filderstadt, Germany
hammes@uni-hohenheim.de

Satoshi Hanada
Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
s-hanada@aist.go.jp

Theo A. Hansen
Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Kerklaan 30, NL 9751 NN Haren, The Netherlands
T.A.Hansen@rug.nl

Jeremy M. Hardie
Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Turner Street, London E1 2AD, UK
jeremy.hardie@btinternet.com

Guadalupe Hernandez-Eugenio
Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la Méditerranée, 163 Avenue de Luminy, Case 925, 13288 Marseille Cedex 09, France

Christian Hertel
German Institute of Food Technology (DIL e.V.), Professor-von-Klitzing-Strasse 7, D-49610 Quakenbrück, Germany
c.hertel@dil-ev.de

Jeroen Heyman
Ghent University, Department BFM (WE10V), Laboratory of Microbiology, K-L. Ledeganckstraat 35, B-9000 Gent, Belgium
jeroen.heyman@UGent.Be

Hans Hippe
Zur Scharfmuehle 46, 37083 Gottingen, Germany
ghi@t-online.de

Becky Jo Hollen
Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70001, USA
bholle1@lsu.edu

Christof Holliger
EPFL LBE, Laboratory for Environmental Biotechnology, CH C3 425 (Bâtiment Chimie), Station 6, CH-1015 Lausanne, Switzerland
christof.holliger@epfl.ch

Kim Holmstrøm
Bioneer A/S, Kogle Allé 2, DK-2970 Hørsholm, Denmark
khb@bioneer.dk

Wilhelm H. Holzapfel
School of Life Sciences, Handong Global University, Pohang, Gyeongbuk, 791-708, South Korea
wholzem@handong.net

John V. Hookey
Department for Bioanalysis and Horizon Technologies, Health Protection Agency, Centre for Infections, 61 Colindale Avenue, London NW9 5EY, UK

Robert Huber
Kommunale Berufsfachschule für biologisch-technische Assistenten, Stadtgraben 39, D-94315 Straubing, Germany
robert.huber@blastraubing.de

Philip Hugenholtz
Microbial Ecology Program, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
hugenholtz@lbl.gov

Morio Ishikawa
Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1 Sakuragaoka 1-chome, Setagaya-ku, Tokyo 156-8502, Japan
mishika@nodai.ac.jp

Jari Jalava
National Public Health Institute, Department of Microbiology, Turku University, Kinnunyllynkatu 13, Turku, FIN-20520, Finland
jari.jalava@utu.fi

Peter H. Janssen
Grasslands Research Centre, AgResearch, Private Bag 11008, Palmerston North 4442, New Zealand
peter.janssen@agresearch.co.nz

Graeme N. Jarvis
Rumen Biotechnology, Grasslands Research Centre, AgResearch, Private Bag 11008, Palmerston North 4442, New Zealand
Graeme.Jarvis@agresearch.co.nz

Pierre Juteau
Département d’assainissement, Cégep de Saint-Laurent, 625 avenue Sainte-Croix, Montréal QC, Canada H4L 3X7
pjuteau@csegp-st-laurent.qc.ca

Riikka Juvonen
VTT Biotechnology, P.O. Box 1500, Espoo, FI-02044 VTT, Finland
riikka.juvonen@vtt.fi

Akiko Kageyama
Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
kageyama@nibs.go.jp

Yoichi Kamagata
Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido 062-8517, Japan
kamagata@aist.go.jp

Peter Kämpfer
Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32 (IFZ), D-35392 Gießen, Germany
peter.kampfer@unwocl.uni-giessen.de
CONTRIBUTORS

Yoshiaki Kawamura
Department of Microbial-Bioinformatics, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, 40 Tsukasa-machi, Gifu 500-8705, Japan
kawamura@cc.gifu-u.ac.jp

Byung-Chun Kim
Biological Resources Center, KRIBB, Daejeon, 305-806, Republic of Korea

Bon Kimura
Department of Food Science Technology, Kouman 4-5-7
Minato-ku, Tokyo University of Fisheries, Tokyo, 108 8477, Japan
kimubo@tokyo-u-fish.ac.jp

Oleg R. Kotsyurbenko
Helmholtz Centre for Infection Research, Environmental Microbiology Laboratory, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
kotsor@hotmail.com

Lee R. Krumholz
Department of Botany and Microbiology and Institute for Energy and the Environment, 770 Van Vleet Oval, The University of Oklahoma, Norman, OK 73019, USA
krumholz@ou.edu

Jan Kuever
Department of Microbiology, Bremen Institute for Materials Testing, Foundation Institute for Materials Science, Paul-Feller-Strasse 1, D-28199 Bremen, Germany
kuever@mpa-bremen.de

Paul A. Lawson
Department of Botany and Microbiology, George Lynn Cross Hall, 770 Van Vleet Oval, The University of Oklahoma, Norman, OK 73019-0245, USA
paul.lawson@ou.edu

Ute Lechner
Martin-Luther-University Halle-Wittenberg, Institute of Biology/Microbiology, Kurt-Mothes-Str. 3, 06099 Halle, Germany
ute.lechner@uniklinikum-halle.de

Yong-Jin Lee
Department of Microbiology, Biological Sciences Building, University of Georgia, Cedar Street, Athens, GA 30602, USA
yjlee01@gmail.com

Jørgen J. Leisner
Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Grønegårdsvej 15, DK-1870 Frederiksberg C. (Copenhagen), Denmark
jil@life.ku.dk

Niall A. Logan
Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
nalo@gcal.ac.uk

Wolfgang Ludwig
Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
ludwig@micro.biologie.tu-muenchen.de

Heinrich Lünsdorf
HIZI - Helmholtz Zentrum für Infektionsforschung, Ablig, Vakzinologie/Elektronenmikroskopie, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
heinrich.luensdorf@helmholtz-hzi.de

Boguszaw Lupa
Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Cedar Street, Athens, GA 30602, USA
lupa@uga.edu

Michael T. Madigan
Southern Illinois University, Department of Microbiology, Mail Stop 6508, Carbondale, IL 62901-4399, USA
madigan@micro.siu.edu

Michel Magot
Université de Pau et des Pays de l’Adour, Environnement et Microbiologie, IBEAS - BP1135, 64013 Pau, France
michel.magot@unic.pau.fr

Hélène Marchandin
Laboratoire de Bactériologie, Hôpital Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
h-marchandin@chu-montpellier.fr

James McLauchlin
Food Water and Environmental Microbiology Network, Health Protection Agency Regional Microbiology Network, 7th Floor Holborn Gate, 330 High Holborn, London WC1V 7PP, UK
Jim.McLauchlin@HPA.org.uk

Tahar Mechichi
Laboratoire des Bioprocédés, Centre de Biotechnologie de Sfax BP “K”, 3038 Sfax, Tunisia
mechichi.tahar@ubs.rnu.tn

Encarnación Mellado
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Spain
emellado@us.es

Noha M. Mesbah
Department of Microbiology, University of Georgia, 527 Biological Sciences Bldg., Cedar Street, Athens, GA 30602-2605, USA
nmesbah@uga.edu

Elizabeth Miranda-Tello
Departamento de Biotecnología Ambiental, Ecología Microbiana Aplicada y Contaminación, El Colegio de la Frontera Sur, Unidad Chetumal, Av. del Centenario km 5.5, Col. Calderitas, C.P. 77900 Chetumal, Quintana Roo, Mexico
emiranda@ecosur.mx

Koji Mori
NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
mori@nbrc.nite.go.jp

Youichi Niimura
Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Setagaya-ku, Tokyo 156-8502, Japan
niimura@nodai.ac.jp

Gregory R. Noel
Department of Crop Sciences, USDA ARS, University of Illinois, Urbana, IL 61801, USA
g-noel1@illinois.edu

Spyridon Ntougias
Institute of Kalamata, National Agricultural Research Foundation, Lakanikis 87, 24100 Kalamata, Greece
sntougias@in.gr

Kiyofumi Ohkusui
Department of Microbiology, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Yanagido, Gifu 501-1193, Japan
ohkusu@cc.gifu-u.ac.jp
Bernard Ollivier
Laboratoire de Microbiologie IRD, UMR 180, Universitès
de Provence et de la Méditerranée, 163 Avenue de Luminy,
Case 925, 13288 Marseille cedex 09, France
bernard.ollivier@univmed.fr

Rob U. Onyenwoke
Room 8105 Neuroscience Research Building, UNC School
of Medicine Campus Box 7250, 115 Mason Farm Road,
Chapel Hill, NC 27599-7250, USA
onyenwok@email.unc.edu

Ronald S. Oremland
US Geological Survey, Bldg. 15, McKelvey Building, MS 480,
345 Middlefield Road, Menlo Park, CA 94025, USA
roremlan@usgs.gov

Aharon Oren
Department of Plant and Environmental Sciences,
The Institute of Life Sciences, The Hebrew University
of Jerusalem, Jerusalem, Israel
orena@shum.cc.huji.ac.il

Ro Osawa
Department of Bioscience, Graduate School of Science,
Kobe University, Rokkodai 1-1, Nada-ku,
Kobe City 657-8501, Japan
osawa@kobe-u.ac.jp

Yong-Ha Park
Korean Institute of Science and Technology, Bioinformatics &
Systematics Laboratory, Korean, Collection for Type Cultures,
Korea Inst. of Sci. & Tech., Daedeok Science Park,
Republic of Korea
peter@yusm.ac.kr

Sofiya N. Parshina
Winogradsky Institute of Microbiology, Russian Academy
of Sciences, 7/2, Prospekt 60-letiya Oktyabrya 117312,
Moscow, Russia
sonjaparshina@mail.ru

Bharat K. C. Patel
Microbial Discovery Research Unit, School of Biomolecular
Sciences, Griffith University, Nathan Campus, Kessels Road,
Brisbane, Queensland 4111, Australia
B.Patel@griffith.edu.au

Milind S. Patole
National Centre for Cell Science, Pune University Campus,
Ganeshkhind, Pune 411 007, India
patole@nccs.res.in, milindtpatole@hotmail.com

Elena V. Pikuta
Astrobiology Laboratory, room 4247, National Space Science
and Technology Center, 320 Sparkman Drive, Huntsville,
AL 35805, USA
pikutae@UAH.edu

Caroline M. Pluggge
Laboratory of Microbiology, Wageningen University,
Dreijenplein 10, 6703 HB Wageningen, The Netherlands
Caroline.Pluggge@uww.nl

Gérard Prensier
CNRS, UMR 6023 Biologie des Protistes, Complexe
Scientifique des Cézeaux, 65177 Aubière cedex, France
Gerard.Prensier@univ-bpclermont.fr

James F. Preston III
Department of Microbiology and Cell Science,
University of Florida, Gainesville, FL 32611, USA
jpreston@ufl.edu

Fergus G. Priest
School of Life Sciences, Heriot Watt University, Edinburgh
EH14 4AS, UK
f.g.priest@hw.ac.uk

Rüdiger Pukall
DSM - Deutsche Sammlung von Mikroorganismen und
Zellkulturen, Inhoffenstrasse 7 B, D-38124 Braunschweig,
Germany
rpu@dsmz.de

Fred A. Rainey
Department of Biological Sciences, 202 Life Sciences Building,
Louisiana State University, Baton Rouge, LA 70001, USA
frainey@lsu.edu

Dilip R. Ranade
Microbial Sciences Division, Agharkar Research Institute,
G. G. Agarkar Road, Pune 411004, India
drranade@gmail.com, drranade@ari.pune.org

Gilles Ravot
Protéus SA,70, allée Graham Bell, Parc Georges Besse,
30000 Nimes, France
g.ravot@proteus.fr

Catherine E. D. Rees
School of Biosciences, University of Nottingham, Sutton
Bonnington Campus, Loughborough, Leicestershire
LE12 5RD, UK
cath.rees@nottingham.ac.uk

Kathryn L. Ruoff
Pathology Department, Dartmouth Hitchcock Medical Center,
One Medical Center Drive, Lebanon, NH 03756, USA
kathryn.l.ruoff@hitchcock.org

James B. Russell
Department of Microbiology, 157 Wing Hall,
Cornell University, Ithaca, NY 14853-8101, USA
jbr8@cornell.edu

Nicholas J. Russell
Imperial College London, Wye, Ashford, Kent TN25 5AT, UK
nicholas.russell@imperial.ac.uk

Masataka Satomi
2-12-4 Fukuro, Kanazawa-ku, National Research Institute
of Fisheries & Science, Yokohama 236-8648, Japan
msatomi@aist.go.jp

Bernhard Schink
Lehrstuhl für Mikrobielle Ökologie, Fakultät für Biologie,
Universität Konstanz, Fach M 654, D-78457 Konstanz,
Germany
Bernhard.Schink@uni-konstanz.de

Kurt-Heinz Schleifer
Lehrstuhl für Mikrobiologie, Technische Universität
München, Am Hochanger 4, D-85350 Freising, Germany
schleife@mikro.biologie.tu-muenchen.de

Heinz Schlesner
Institut für Allgemeine Mikrobiologie, Christian-Albrechts-
Universität, Am Botanischen Garten 1-9, D-24118 Kiel,
Germany
hschlesner@t-online.de

Yuji Sekiguchi
Bio-Measurement Research Group, Institute for Biological
Resources and Functions, National Institute of Advanced
Science and Technology (AIST), AIST Tsukuba Central 6,
Ibaraki 305-8566, Japan
y.sekiguchi@aist.go.jp
Haroun N. Shah
Molecular Identification Services Unit, Department for Bioanalysis and Horizon Technologies, Health Protection Agency, Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
haroun.shah@hpa.org.uk

Sisinty Shivaji
Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
shivas@ccmb.res.in

Yogesh S. Shouche
Microbial Culture Collection (DBT), National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007, India
yogesh@nccs.res.in, yogesh.shouche@gmail.com

Maria V. Simankova
Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospekt 60-leiﬁ ty Oktjabrja 117312, Moscow, Russia
msimankova@mail.ru

Alexander Slobodkin
Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospekt 60-leiﬁ ty Oktjabrja 117312, Moscow, Russia
aslobodkin@hotmail.com

Alanna M. Small
Department of Medicine, Tulane University School of Medicine, 430 Tulane Ave., SL-50, New Orleans, LA 70112, USA

Peter H. A. Sneath
Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
phas1@le.ac.uk

Tatyana G. Sokolova
Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospekt 60-leiﬁ ty Oktjabrja 117312, Moscow, Russia
tatso@mail.ru

Mark D. Spanevello
Microbial Discovery Research Unit, School of Biomolecular Sciences, Griffith University, Nathan Campus, Kessels Road, Brisbane, Queensland 4111, Australia

Stefan Spring
Microbiology Department, DSM - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstrasse 7 B, D-38124 Braunschweig, Germany
ssp@dszm.de

Erko Stackebrandt
DSM - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstrasse 7 B, D-38124 Braunschweig, Germany
erko@dszm.de

Alfons J. M. Stams
Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Building no. 316, 6703 HB Wageningen, The Netherlands
fons.stams@wur.nl

Thaddeus B. Stanton
Agricultural Research Service – Midwest Area, National Animal Disease Center, United States Department of Agriculture, P.O. Box 70, 2300 Dayton Road, Ames, IA 50010-0070, USA
Thad.Stanton@ars.usda.gov

John F. Stolz
Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA 15282, USA
stolz@mail.duq.edu

Carsten Strömpl
Finanzabteilung, Helmholtz Zentrum für Infektionsforschung HZI, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
cst@hzi.de

Ken-ichiro Suzuki
NITE Biological Resource Center (NBRC), Department of Biotechnology, National Institute of Technology and Evaluation, 5-8, Kazusakamata 2-chome, Kisarazu-shi, Chiba 292-0818, Japan
suzuki-ken-ichiro@nite.go.jp

Pavel Švec
Masaryk University, Faculty of Science, Department of Experimental Biology, Czech Collection of Microorganisms, Tyršovo 14, 602 00 Brno, Czech Republic
mpavel@sci.muni.cz

Ken Takai
Subground Animalcule Retrieval (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
kent@jamstec.go.jp

David Taras
Department of Gastrointestinal Microbiology, German Institute of Human Nutrition, Bergholz-Rehbrücke, Germany

Michael Teuber
Labor für Lebensmittelmirobiologie, ETH-Zentrum, Institute fuer Lebensmittelwissenschaft, Raemistrasse 101, 8092 Zurich, Switzerland
michael.teuber@ilw.agrl.ethz.ch

Brian J. Tindall
DSM - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstrasse 7 B, D-38124 Braunschweig, Germany
bti@dszm.de

Jean Pierre Touzel
NRA, UMR 614 Fractionnement des Agro-ressources et Environnement, 8 rue Gabriel-voisin, B.P. 316, 51688 Reims cedex 2, France
touzel@reims.inra.fr

Kenji Ueda
Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-8510, Japan
ueda@brs.nihon-u.ac.jp

Marc Vancanneyt
BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, 1886 Kameino, Belgium
marc.vancanneyt@ugent.be

Antonio Ventosa
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Apdo. 874, 41080 Sevilla, Spain
ventosa@us.es

William G. Wade
Infection Research Group, King’s College London Dental Institute, Floor 28, Tower Wing, Guy’s Campus, London SE1 9RT, UK
william.wade@kcl.ac.uk
Nathalie Wery
INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, 11100 Narbonne, France
weryn@supagro.inra.fr

Robert A. Whiley
Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Turner Street, London E1 2AD, UK
r.a.whiley@qmul.ac.uk

Terence R. Whitehead
USDA/ARS, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA
Terry.Whitehead@ars.usda.gov

William B. Whitman
Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Cedar Street, Athens, GA 30602-2605, USA
whitman@uga.edu

Juergen Wiegel
Department of Microbiology, 211–215 Biological Sciences Building, University of Georgia, Cedar Street, Athens, GA 30602-2605, USA
jwiegel@uga.edu

Anne Willems
Laboratorium voor Microbiologie, Vakgroep Biochemie, Fysiologie en Microbiologie, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
Anne.Willems@rug.ac.be

Kazuhide Yamasato
Faculty of Applied Bio-Science, Department of Fermentation Science, 1-1 Sakuragaoka 1-chome, Setagayaku, Tokyo 156-8502, Japan
yamasato@ka5.koalanet.ne.jp

Fujitoshi Yanagida
Institute of Enology and Viticulture, University of Yamanashi, 1-13-1, Kitashin, Kofu, Yamanashi 400-0005, Japan
yanagida@mail.yamanashi.ac.jp

Jung-Hoon Yoon
Laboratory of Microbial Function, Korea Research Institute of Bioscience and Biotechnology (KRIIB), P.O. Box 115, Yusong, Taejon, South Korea
jhyoon@kribb.re.kr

George A. Zavarzin
Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospkt 60-letiya Oktyabrya 117312, Moscow, Russia
zavarzin@inmi.host.ru

Daria G. Zavarzina
Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospkt 60-letiya Oktyabrya 117312, Moscow, Russia
zavarzinatwo@mail.ru

Tatjana N. Zhilina
Winogradsky Institute of Microbiology, Russian Academy of Sciences, 7/2, Prospkt 60-letiya Oktyabrya 117312, Moscow, Russia
zhilina@mail.ru
Citation

The Systematics is a peer-reviewed collection of chapters, contributed by authors who were invited by the Trust to share their knowledge and expertise of specific taxa. Citations should refer to the author, the chapter title, and inclusive pages rather than to the Editors.

Arrangement of the Manual

As in the previous volumes of this edition, the Manual is arranged in phylogenetic groups based upon the analyses of the 16S rRNA presented in the introductory chapter “Revised road map to the phylum Firmicutes”. These groups have been substantially modified since the publication of volume 1 in 2001, reflecting both the availability of more experimental data and a different method of analysis. Since volume 3 includes only the phylum Firmicutes, taxa are arranged by class, order, family, genus and species. Within each taxon, the nomenclatural type is presented first and indicated by a superscript T. Other taxa are presented in alphabetical order without consideration of degrees of relatedness.

Articles

Each article dealing with a bacterial genus is presented wherever possible in a definite sequence as follows:

a. Name of the genus. Accepted names are in boldface, followed by “defining publication(s)”, i.e. the authority for the name, the year of the original description, and the page on which the taxon was named and described. The superscript AL indicates that the name was included on the Approved Lists of Bacterial Names, published in January 1980. The superscript VP indicates that the name, although not on the Approved Lists of Bacterial Names, was subsequently validly published in the International Journal of Systematic and Evolutionary Microbiology (or the International Journal of Systematic Bacteriology). Names given within quotation marks have no standing in nomenclature; as of the date of preparation of the Manual they had not been validly published in the International Journal of Systematic and Evolutionary Microbiology, although they may have been “effectively published” elsewhere. Names followed by the term “nov.” are newly proposed but will not be validly published until they appear in a Validation List in the International Journal of Systematic and Evolutionary Microbiology. Their proposal in the Manual constitutes only “effective publication”, not valid publication.

b. Name of author(s). The person or persons who prepared the Bergey’s article are indicated. The address of each author can be found in the list of Contributors at the beginning of the Manual.

c. Synonyms. In some instances a list of some synonyms used in the past for the same genus is given. Other synonyms can be found in the Index Bergeyana or the Supplement to the Index Bergeyana.

d. Etymology of the name. Etymologies are provided as in previous editions, and many (but undoubtedly not all) errors have been corrected. It is often difficult, however, to determine why a particular name was chosen, or the nuance intended, if the details were not provided in the original publication. Those authors who propose new names are urged to consult a Greek and Latin authority before publishing in order to ensure grammatical correctness and also to ensure that the meaning of the name is as intended.

e. Salient features. This is a brief resume of the salient features of the taxon. The most important characteristics are given in boldface. The DNA G+C content is given.

f. Type species. The name of the type species of the genus is also indicated along with the defining publication(s).

g. Further descriptive information. This portion elaborates on the various features of the genus, particularly those features having significance for systematic bacteriology. The treatment serves to acquaint the reader with the overall biology of the organisms but is not meant to be a comprehensive review. The information is normally presented in the following sequence:

Colonial morphology and pigmentation
Growth conditions and nutrition
Physiology and metabolism
Genetics, plasmids, and bacteriophages
Phylogenetic treatment
Antigenic structure
Pathogenicity
Ecology

h. Enrichment and isolation. A few selected methods are presented, together with the pertinent media formulations.

i. Maintenance procedures. Methods used for maintenance of stock cultures and preservation of strains are given.

j. Procedures for testing special characters. This portion provides methodology for testing for unusual characteristics or performing tests of special importance.
k. Differentiation of the genus from other genera. Those characteristics that are especially useful for distinguishing the genus from similar or related organisms are indicated here, usually in a tabular form.

l. Taxonomic comments. This summarizes the available information related to taxonomic placement of the genus and indicates the justification for considering the genus a distinct taxon. Particular emphasis is given to the methods of molecular biology used to estimate the relatedness of the genus to other taxa, where such information is available. Taxonomic information regarding the arrangement and status of the various species within the genus follows. Where taxonomic controversy exists, the problems are delineated and the various alternative viewpoints are discussed.

m. Further reading. A list of selected references, usually of a general nature, is given to enable the reader to gain access to additional sources of information about the genus.

n. Differentiation of the species of the genus. Those characteristics that are important for distinguishing the various species within the genus are presented, usually with reference to a table summarizing the information.

o. List of species of the genus. The citation of each species is given, followed in some instances by a brief list of objective synonyms. The etymology of the specific epithet is indicated. Descriptive information for the species is usually presented in tabular form, but special information may be given in the text. Because of the emphasis on tabular data, the species descriptions are usually brief. The type strain of each species is indicated, together with the collection(s) in which it can be found. (Addresses of the various culture collections are given in the article in Volume 1 entitled Culture Collections: An Essential Resource for Microbiology.) The 16S rRNA gene sequence used in phylogenetic analysis and placement of the species into the taxonomic framework is given, along with the GenBank (or other database) accession number. Additional comments may be provided to point the reader to other well-characterized strains of the species and any other known DNA sequences that may be relevant.

p. Species incertae sedis. The List of Species may be followed in some instances by a listing of additional species under the heading “Species Incertae Sedis” or “Other organisms”. The taxonomic placement or status of such species is questionable, and the reasons for the uncertainty are presented.

q. References. All references given in the article are listed alphabetically at the end of the family chapter.

Tables
In each article dealing with a genus, there are generally three kinds of table: (a) those that differentiate the genus from similar or related genera, (b) those that differentiate the species within the genus, and (c) those that provide additional information about the species (such information not being particularly useful for differentiation). The meanings of symbols are as follows:

+: 90% or more of the strains are positive
d: 11–89% of the strains are positive
−: 90% or more of the strains are negative
D: different reactions occur in different taxa (e.g., species of a genus or genera of a family)
v: strain instability (NOT equivalent to “d”) w: weak reaction.
ND, not determined or no data.

These symbols, and exceptions to their use, as well as the meaning of additional symbols, are given in footnotes to the tables.

Use of the Manual for determinative purposes
Many chapters have keys or tables for differentiation of the various taxa contained therein. For identification of species, it is important to read both the generic and species descriptions because characteristics listed in the generic descriptions are not usually repeated in the species descriptions.

The index is useful for locating the articles on unfamiliar taxa or in discovering the current classification of a particular taxon. Every bacterial name mentioned in the Manual is listed in the index. In addition, an up-to-date outline of the taxonomic framework is provided in the introductory chapter “Revised road map to the phylum Firmicutes”.

Errors, comments, suggestions
As in previous volumes, the editors and authors earnestly solicit the assistance of all microbiologists in the correction of possible errors in Bergey’s Manual of Systematic Bacteriology. Comments on the presentation will also be welcomed as well as suggestions for future editions. Correspondence should be addressed to:

Editorial Office
Bergey’s Manual Trust
Department of Microbiology
University of Georgia
Athens, GA 30602-2605
USA
Tel: +1-706-542-4219; fax +1-706-542-2674
e-mail: bergeys@uga.edu