Modern Aspects of Electrochemistry

Topics in Number 42 include:

- The electrochemistry and electrocatalysis of Ruthenium in regards to the development of electrodes for Polymer Electrolyte Membrane (PEM) fuel cells
- Breakthroughs in Solid Oxide Fuel Cell (SOFC) anodes and cathodes leading to improved electrocatalysis
- Electrocatalysis of the electrochemical reduction of CO$_2$ on numerous metals
- The interfacial phenomena of electrodeposition and codeposition, and the need for new theoretical analyses of the electrode-electrolyte interface
- Advantages of scanning tunneling microscopy (STM) in understanding the basics of catalysis, electrocatalysis and electrodeposition
- The role of electrochemistry in emerging technologies including electrodeposition and electroforming at the micro and nano levels, semiconductor and information storage, including magnetic storage devices, and modern medicine

Topics in Number 41 include:

- Solid State Electrochemistry, including the major electrochemical parameters needed for the treatment of electrochemical cells as well as the discussion of electrochemical energy storage and conversion devices such as fuel cells
- Nanoporous carbon and its electrochemical application to electrode materials for super capacitors in relationship to the key role nanoporous carbons have played in the purification of liquids and the storage of energy
- The analysis of variance and covariance in electrochemical science and engineering
- The use of graphs in electrochemical reaction networks, specifically: (1) reaction species graphs, (2) reaction mechanism graphs, and (3) reaction route graphs
MODERN ASPECTS OF ELECTROCHEMISTRY

No. 43

Modeling and Numerical Simulations

Edited by

MORDECHAY SCHLESINGER
University of Windsor
ON, Canada
The present volume is devoted to modeling and numerical simulations in electrochemistry. Such a volume cannot be expected to limit itself to the treatment of topics and systems that narrowly defined the field of electrochemistry in the past. On the contrary, the clear demarcation lines between disciplines have become increasingly less pronounced. This positive development, which is considered by many to be the hallmark of the new century, means that related or neighboring fields are in position to cross-fertilize each other as never before, which will benefit everyone. It is in this light that readers of the present volume should view the eight chapters presented here.

Chapter 1 introduces a discussion of the two tools widely considered to be the most important for modeling. These are the finite element and finite difference methods. Chapter 2, by G. Drake, is an in-depth presentation of modeling in atomic physics. It becomes evident that even for as few as three bodies an analytical treatment is not possible and one must resort to a type of modeling. Chapter 3, by Lasia, treats the modeling of impedance of porous electrodes. Chapter 4 is authored by Kottke, Fedorov and Gole. They treat multiscale mass transport in porous silicon gas sensors.

The next three chapters deal with modeling in the area of fuel cells. In Chapter 5, Eikerling and Malek take up the issue of electrochemical materials for PEM fuel cells, while in Chapter 6, Meyers models catalyst structure degradation in PEM fuel cells. Chapter 7,
which concludes this group of three chapters, presents a thorough discussion by Weber, Balliet, Gunterman, and Newman of modeling water management in PEM fuel cells. Chapter 8, by Verbrugge, deals with modeling of electrochemical energy storage devices for hybrid electric vehicle applications.

Each chapter is self contained and independent of the other chapters, which means that the chapters do not have to be read in consecutive order or as a continuum. Readers who are familiar with the material in certain chapters may skip those chapters and still derive maximum benefit from the chapters they read.

Finally, thanks are due to each of the fifteen authors who helped make the volume possible.

Windsor, Ontario, Canada

Mordechay Schlesinger
Contents

Preface ... v

List of Contributors ... ix

1. Mathematical Modeling in Electrochemistry
 Mordechay Schlesinger .. 1

2. High Precision Atomic Theory: Tests of Fundamental Understanding
 G.W.F. Drake, Qixue Wu and Zheng Zhong 33

3. Modeling of Impedance of Porous Electrodes
 Andrzej Lasia ... 67

 Peter A. Kottke, Andrei G. Fedorov and James L. Gole 139

 Michael H. Eikerling and Kourosh Malek 169

 Jeremy P. Meyers ... 249
7. Modeling Water Management in Polymer-Electrolyte Fuel Cells
 Adam Z. Weber, Ryan Balliet, Haluna P. Gunterman and John Newman .. 273

 Mark W. Verbrugge .. 417

Index ... 525
List of Contributors

Ryan Balliet
Department of Chemical Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462

G.W.F. Drake
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Michael H. Eikerling
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6

Andrei G. Fedorov
G.W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. Atlanta, GA 30332-0405

James L. Gole
G.W. Woodruff School of Mechanical Engineering, School of Physics, Georgia Institute of Technology, 837 State St., Atlanta, GA 30332-0405

Haluna P. Gunterman
Department of Chemical Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462
Peter A. Kottke
G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Dr. NW, Atlanta, GA 30332-0405

Andrzej Lasia
Département de Chimie, Université de Sherbrooke, Québec, Canada J1K 2R1

Kourosh Malek
National Research Council of Canada, Institute for Fuel Cell Innovation, 4250 Westbrook Mall, Vancouver, British Columbia, Canada, V6T 1W5

Jeremy P. Meyers
Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX 78712

John Newman
Department of Chemical Engineering, University of California, 201 Gilman Hall, Berkeley, CA 94720-1462

Mark W. Verbrugge
General Motors Research and Development, 30500 Mound Road, Warren, MI 48090-9055

Adam Z. Weber
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720

Qixue Wu
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Zheng Zhong
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4