Marion Gurfein originally painted the upper water color of the tiger in 1996. In 2006, four years after the onset of macular degeneration, she revisited her original painting as part of her artistic chronicles of the progression.
Artificial Sight

Basic Research, Biomedical Engineering, and Clinical Advances
Series Preface

The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological & Medical Physics/Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information.

Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.

Elias Greenbaum
Oak Ridge, TN
Preface

For over 50 years the U.S. Department of Energy’s Biological and Environmental Research (BER) program has advanced environmental and biomedical knowledge that promotes improved energy production, development, and use; international scientific and technological cooperation; and research that improves the quality of life for all peoples. BER supports these vital missions through competitive and peer-reviewed research at national laboratories, universities, and private institutions. This book, Artificial Sight: Basic Research, Biomedical Engineering, and Clinical Advances emerged mostly from the research programs of presenters at the Second DOE International Symposium on Artificial Sight. The book, however, is not a symposium proceedings. The editors encouraged the chapter authors to expand on the vision of their research in this field which lies at the intersection of physics, chemistry, biology and biomedical engineering. The members of the organizing committee for this DOE symposium are M.S. Humayun (chairman), E. Greenbaum (co-chairman), D.A. Cole, R. Iezzi, Y. Tano, M.V. Viola, J.D. Weiland and E. Zrenner. The work of the DOE Artificial Retina Program continues with the collaboration of the National Laboratory system, universities, and private industry. The members of this team have helped create micromachine technology design, mathematical modeling of retinal information processing, microelectrode arrays designed for retinal tissue stimulation, and telemetric communications. We thank Eugenie V. Mielczarek, Professor Emeritus of Physics at George Mason University, for bringing our attention to Marion Gurfein’s artwork which is exhibited in the frontispiece.

Mark S. Humayun
James D. Weiland
Gerald Chader
Los Angeles, CA

Elias Greenbaum
Oak Ridge, TN

June 2007
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series Preface</td>
<td>v</td>
</tr>
<tr>
<td>Preface</td>
<td>vi</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xv</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>xxi</td>
</tr>
<tr>
<td>Chapter 1. Biological Considerations for an Intraocular Retinal Prosthesis</td>
<td>1</td>
</tr>
<tr>
<td>Hossein Ameri, James D. Weiland and Mark S. Humayun</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>Retinal Implant</td>
<td>19</td>
</tr>
<tr>
<td>Summary</td>
<td>25</td>
</tr>
<tr>
<td>Chapter 2. Artificial Vision: Vision of a Newcomer</td>
<td>31</td>
</tr>
<tr>
<td>Takashi Fujikado, Hajime Sawai and Yasuo Tano</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Overall Research Goals of Japanese Consortium for Artificial Retina</td>
<td>32</td>
</tr>
<tr>
<td>The Concept of Suprachoroidal-Transretinal Stimulation</td>
<td>32</td>
</tr>
<tr>
<td>The Effectiveness of STS in Animal Model</td>
<td>33</td>
</tr>
<tr>
<td>Neuroprotection by Electrical Stimulation</td>
<td>39</td>
</tr>
<tr>
<td>Human Studies</td>
<td></td>
</tr>
<tr>
<td>Chapter 3. The Effects of Visual Deprivation: Implications for Sensory Prostheses</td>
<td>47</td>
</tr>
<tr>
<td>Ione Fine</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>Sensory Plasticity in Adulthood: Potential Differences between Cortical Areas</td>
<td>47</td>
</tr>
<tr>
<td>Compensating for a Missing Sense: After Losing a Sense there are</td>
<td>50</td>
</tr>
<tr>
<td>Improvements in the Ability to Use the Remaining Senses</td>
<td></td>
</tr>
<tr>
<td>Compensating for a Missing Sense: What is the Neural Basis?</td>
<td>52</td>
</tr>
<tr>
<td>Molyneaux’s Question: The Role of Experience in Maintaining Sensory Function</td>
<td>57</td>
</tr>
<tr>
<td>Implications for Sensory Prostheses and Rehabilitation</td>
<td>62</td>
</tr>
</tbody>
</table>
Chapter 4. Prosthetic Vision Simulation in Fully and Partially Sighted Individuals
Matthias Walter, Liancheng Yang and Gislin Dagnelie

Introduction 71
Methods 72
Results 76
Discussion 83
Conclusion 88
Appendix 89

Chapter 5. Testing Visual Functions in Patients with Visual Prostheses
Robert Wilke, Michael Bach, Barbara Wilhelm, Wilhelm Durst, Susanne Trauzettel-Klosinski and Eberhart Zrenner

Introduction 91
Designing a Test for Visual Functions with Visual Prostheses 94
Implementation of a New Test Battery 95
Conclusion 108

Engineering Applications

Chapter 6. The IMI Retinal Implant System
Ralf Hornig, Thomas Zehnder, Michaela Velikay-Parel, Thomas Laube, Matthias Feucht and Gisbert Richard

Introduction 111
Retinal Implant Technology 112
Preclinical Studies 119
Clinical Study 120
Conclusions 126

Chapter 7. Challenges in Realizing a Chronic High-Resolution Retinal Prosthesis
Wentai Liu, Mohanasankar Sivaprakasam, Guoxing Wang, Mingcui Zhou, James D. Weiland, and Mark S. Humayun

Introduction 129
External Video Processing Unit 132
Large Stimulation Voltage 133
Stimulation Flexibility 135
Powering of the Retinal Implant 137
Wireless Power Transmission 138
Wireless Data Communication 143
Conclusions 147
Chapter 8. Large-scale Integration–Based Stimulus Electrodes for Retinal Prosthesis

Jun Ohta, Takashi Tokuda, Keiichiro Kagawa, Yasuo Terasawa, Motoki Ozawa, Takashi Fujikado and Yasuo Tano

Introduction 151
The PFM Photosensor as Subretinal Implantable Device 152
Application of PFM Photosensor to the Stimulation of Retinal Cells 159
Implantation of LSI-based Retinal Prosthesis Devices 162
Summary 166

Chapter 9. Development of a Wireless High-Frequency Microarray Implant for Retinal Stimulation

Introduction 169
Wireless Implantable Bio-Device Interface (WIBI) 172
Design of Retinal Prosthesis 178
Experimental Results 184
Conclusion 185

Chapter 10. Visual Prosthesis Based on Optic Nerve Stimulation with Penetrating Electrode Array

Qiushi Ren, Xinyu Chai, Kaijie Wu, Chuanqing Zhou and C-Sight Group

Introduction 187
Animal Experiment 189
The Hardware Design of Visual Prosthesis 197
Implantable Micro-Camera in Model Eye 203
Conclusion 206

Stimulating Electrodes

Chapter 11. Dynamic Interactions of Retinal Prosthesis Electrodes with Neural Tissue and Materials Science in Electrode Design

Charlene A. Sanders, Evan J. Nagler, David M. Zhou and Elias Greenbaum

Introduction 209
Electrochemical Reactions at the Electrode–Vitreous Interface 211
Materials Science in Electrode Design 218
Conclusions 223
Chapter 12. In Vitro Determination of Stimulus-Induced pH Changes in Visual Prostheses
A. Chu, K. Morris, A. Agazaryan, A. Istomin, J. Little, R. Greenberg and D. Zhou

Introduction 227
Experimental 230
Results 232
Conclusions 240

Chapter 13. Electrochemical Characterization of Implantable High Aspect Ratio Nanoparticle Platinum Electrodes for Neural Stimulations
Zhiyu Hu, Dao Min Zhou, Robert Greenberg and Thomas Thundat

Introduction 243
Experimental 246
Results and Discussions 248
Conclusions 253

Chapter 14. High-Resolution Opto-Electronic Retinal Prosthesis: Physical Limitations and Design
D. Palanker, A. Vankov, P. Huie, A. Butterwick, I. Chan, M.F. Marmor and M.S. Blumenkranz

Introduction 255
Proximity between Electrodes and Cells as a Resolution-limiting Factor 259
Attracting Retinal Cells to Electrodes 267
Delivery of Information and Power to the Implant 269

Chapter 15. Computational Modeling of Electromagnetic and Thermal Effects for a Dual-Unit Retinal Prosthesis: Inductive Telemetry, Temperature Increase, and Current Densities in the Retina
Stefan Schmidt, Carlos J. Cela, Vinit Singh, James Weiland, Mark S. Humayun and Gianluca Lazzi

Introduction 280
Inductively Coupled Links for a Dual-Unit Retinal Prosthesis 280
Thermal Modeling 283
Computation of Electric Current Densities in the Retina 294
Results 301
Biological Response to Stimulation

Chapter 16. Microstimulation with Chronically Implanted Intracortical Electrodes 307
Douglas McCreery

Introduction 307
The Anatomy and Physiology of the Visual System, as they Relate to a Cortical Visual Prosthesis 308
Microelectrodes for Chronic Intracortical Microstimulation 309
Tissues Responses to Chronically Implanted Microelectrodes 311
Conclusions 321

Chapter 17. A Tissue Change After Suprachoroidal-Transretinal Stimulation with High Electrical Current in Rabbits 325
Kazuaki Nakauchi, Takashi Fujikado, Akito Hirakata and Yasuo Tano

Introduction 325
Material and Methods 326
Results 328
Discussion 330
Conclusion 331

Chapter 18. Electrical Stimulation of Mammalian Retinal Ganglion Cells Using Dense Arrays of Small-Diameter Electrodes 333
Chris Sekirnjak, Pawel Hottowy, Alexander Sher, Wladyslaw Dabrowski, Alan M. Litke and E. J. Chichilnisky

Introduction 333
Materials and Methods 335
Results 338
Discussion 342

Chapter 19. A Mechanism for Generating Precise Temporal Patterns of Activity Using Prosthetic Stimulation 347
Shelley I. Fried, Hain-Ann Hsueh and Frank Werblin

Introduction 347
Methods 348
Results 349
Discussion 353
List of Contributors

G. W. Abrams
Kresge Eye Institute
Wayne State University
Ligon Research Center of Vision
Wayne State University
Detroit, MI
USA

A. Agazaryan
Second Sight Medical Products, Inc.
Sylmar, CA
USA

Hossein Ameri
Doheny Retina Institute
Keck School of Medicine
University of Southern California
Los Angeles, CA
USA

G. W. Auner
SSIM/Biomedical
Engineering/Electrical and Computer
Engineering
Wayne State University
Ligon Research Center of Vision
Detroit, MI
USA

Michael Bach
University Eye Hospital Freiburg
Freiburg, Germany

M. S. Blumenkranz
Department of Ophthalmology
Stanford University
Stanford, CA
USA

A. Butterwick
Hansen Experimental Physics
Laboratory
Stanford University
Stanford, CA
USA

Carlos J. Cela
Department of Electrical and
Computer Engineering
North Carolina State University
Raleigh, NC
USA

Gerald Chader
Doheny Retina Institute
Keck School of Medicine
University of Southern California
Los Angeles, CA
USA

Xinyu Chai
Institute for Laser Medicine
and Bio-Photonics
College of Life Science and
Technology
Shanghai Jiao-Tong University
and C-Sight Group
Shanghai, People’s Republic of China

I. Chan
Department of Ophthalmology and
Hansen Experimental Physics
Laboratory
Stanford University
Stanford, CA
USA
E. J. Chichilnisky
The Salk Institute for Biological Studies
La Jolla, CA
USA

A. Chu
Second Sight Medical Products, Inc.
Sylmar, CA
USA

C-Sight Group
Institute for Laser Medicine and Bio-Photonics
College of Life Science and Technology
Shanghai Jiao-Tong University and C-Sight Group
Shanghai, People’s Republic of China

Wladyslaw Dabrowski
Faculty of Physics and Applied Computer Science
AGH University of Science and Technology
Krakow, Poland

Gislin Dagnelie
Department of Ophthalmology
Johns Hopkins University School of Medicine
Baltimore, MD
USA

Wilhelm Durst
Centre for Ophthalmology
University Eye Hospital Tübingen
Tübingen, Germany

Matthias Feucht
Division of Ophthalmology
University Medical Center Hamburg-Eppendorf,
Hamburg, Germany

Ione Fine
Department of Psychology
University of Washington
Seattle, WA
USA

Shelley I. Fried
Vision Science
University of California - Berkeley
Berkeley, CA
USA

Takashi Fujikado
Department of Applied Visual Science
Osaka University Medical School
Osaka, Japan

Elias Greenbaum
Chemical Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN
USA

R. Greenberg
Second Sight Medical Products, Inc.
Sylmar, CA
USA

John R. Hetling
Department of Bioengineering
University of Illinois at Chicago
Chicago, IL
USA

Akito Hirakata
Department of Ophthalmology
Kyorin University School of Medicine
Tokyo, Japan

Ralf Hornig
IMI Intelligent Medical Implants GmbH
Bonn, Germany

Pawel Hottowy
Faculty of Physics and Applied Computer Science
AGH University of Science and Technology
Krakow, Poland
Hain-Ann Hsueh
Bioengineering
University of California – Berkeley
Berkeley, CA
USA

Zhiyu Hu
Biosciences Division
Oak Ridge National Laboratory
Oak Ridge, TN
USA

P. Huie
Department of Ophthalmology and
Hansen Experimental Physics Laboratory
Stanford University
Stanford, CA
USA

Mark S. Humayun
Doheny Retina Institute
Keck School of Medicine
Department of Ophthalmology
University of Southern California
Los Angeles, CA
USA

A. Istomin
Second Sight Medical Products, Inc.
Sylmar, CA
USA

Keiichiro Kagawa
Graduate School of Materials Science
Nara Institute of Science and Technology
Nara, Japan

Thomas Laube
Division of Ophthalmology
University Hospital Essen
Essen, Germany

Gianluca Lazzi
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC
USA

Alan M. Litke
Santa Cruz Institute for Particle Physics
University of California – Santa Cruz
Santa Cruz, CA
USA

J. Little
Second Sight Medical Products, Inc.
Sylmar, CA
USA

Wentai Liu
Department of Electrical Engineering
University of California – Santa Cruz
Santa Cruz, CA
USA

M. F. Marmor
Department of Ophthalmology
Stanford University
Stanford, CA
USA

J. P. McAllister
Department of Neurosurgery
Wayne State University
Ligon Research Center of Vision
Wayne State University
Detroit, MI
USA

Douglas McCreery
Neural Engineering Program
Huntington Medical Research Institutes
Pasadena, CA
USA

K. Morris
Second Sight Medical Products, Inc.
Sylmar, CA
USA
Evan J. Nagler
Chemical Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN
USA

Kazuaki Nakauchi
Department of Applied Visual Science
Osaka University Medical School
Osaka, Japan

Jun Ohta
Graduate School of Materials Science
Nara Institute of Science and Technology
Nara, Japan

Motoki Ozawa
Vision Institute
R&D Division
NIDEK, Co., Ltd.
Japan

D. Palanker
Department of Ophthalmology and Hansen Experimental Physics Laboratory
Stanford University
Stanford, CA
USA

Qiushi Ren
Institute for Laser Medicine and Bio-Photonics
College of Life Science and Technology
Shanghai Jiao-Tong University and C-Sight Group
Shanghai, People’s Republic of China

Gisbert Richard
Division of Ophthalmology
University Medical Center Hamburg-Eppendorf
Hamburg, Germany

Charlene A., Sanders
Chemical Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN
USA

Hajime Sawai
Department of Physiology
Osaka University Medical School
Osaka, Japan

Stefan Schmidt
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC
USA

Chris Sekirnjak
The Salk Institute for Biological Studies
La Jolla, CA
USA

Alexander Sher
Santa Cruz Institute for Particle Physics
University of California – Santa Cruz
Santa Cruz, CA
USA

Vinit Singh
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC
USA

Mohanasankar Sivaprakasam
Department of Electrical Engineering
University of California – Santa Cruz
Santa Cruz, CA
USA

P. Siy
SSIM/Biomedical Engineering/Electrical and Computer Engineering
Wayne State University
Detroit, MI
USA

M. Talukder
SSIM/Biomedical Engineering/Electrical and Computer Engineering
Wayne State University
Detroit, MI
USA

Yasuo Tano
Department of Ophthalmology
Osaka University Medical School
Osaka, Japan

Yasuo Terasawa
Vision Institute
R&D Division
NIDEK, Co., Ltd.
Japan

Thomas Thundat
Biosciences Division
Oak Ridge National Laboratory
Oak Ridge, TN
USA

Takashi Tokuda
Graduate School of Materials Science
Nara Institute of Science and Technology
Nara, Japan

Susanne Trauzettel-Klosinski
Centre for Ophthalmology
University Eye Hospital Tübingen
Tübingen, Germany

A. Vankov
Department of Ophthalmology and Hansen Experimental Physics Laboratory
Stanford University
Stanford, CA
USA

Michaela Velikay-Parel
Division of Ophthalmology
University Hospital Graz
Graz, Austria

Matthias Walter
Kirchhoff Institute for Physics
Ruprecht Karls University Heidelberg
Heidelberg, Germany

Guoxing Wang
Department of Electrical Engineering
University of California – Santa Cruz
Santa Cruz, CA
USA

James D. Weiland
Doheny Retina Institute
Keck School of Medicine
Department of Ophthalmology
University of Southern California
Los Angeles, CA
USA

Frank Werblin
Molecular and Cell Biology
University of California – Berkeley
Berkeley, CA
USA

Barbara Wilhelm
Steinbeis Transfer Center for Biomedical Optics
Ofterdingen, Germany

Robert Wilke
Centre for Ophthalmology
University Eye Hospital Tübingen
Tübingen, Germany

Kaijie Wu
Institute for Laser Medicine and Bio-Photonics
College of Life Science and Technology
Shanghai Jiao-Tong University and C-Sight Group
Shanghai, People’s Republic of China
xx List of Contributors

Liancheng Yang
Department of Ophthalmology
Johns Hopkins University School of Medicine
Baltimore, MD
USA

R. You
SSIM/Biomedical Engineering/Electrical and Computer Engineering
Wayne State University
Detroit, MI
USA

Thomas Zehnder
IMI Intelligent Medical Implants AG
Zug, Switzerland

Mingcui Zhou
Department of Electrical Engineering
University of California – Santa Cruz
Santa Cruz, CA
USA

Chuanqing Zhou
Institute for Laser Medicine and Bio-Photonics
College of Life Science and Technology
Shanghai Jiao-Tong University and C-Sight Group
Shanghai, People’s Republic of China

David M. Zhou
Second Sight Medical Products, Inc.
Sylmar, CA
USA

Eberhart Zrenner
Centre for Ophthalmology
University Eye Hospital Tübingen
Tübingen, Germany
List of Acronyms

ADL/O Activities of daily living and orientation
adRP Autosomal dominant retinitis pigmentosa
AER Averaged evoked response
AMD Age-related macular degeneration
ANOVA Analysis of variance
APB 2-amino-4-phosphonobutyrate
ARVO Association for Research on Vision and Ophthalmology
ASP Aspartate
AVD Artificial vision device
BaGa Basic grating acuity
BaLM Basic light and motion
BCC Biphasic current controller
BDNF Brain-derived neurotrophic factor
bFGF Basic fibroblast growth factor
BHE Bioheat equation
BSI Brief symptom inventory
CCD Charge coupled device
CMG Common mode gain
CMOS Complementary metal oxide semiconductor
CMRR Common mode rejection ratio
CNTF Ciliary neurotrophic factor
CNV Choroidal neovascular membrane
CT Computed tomography
CV Cyclic voltammetry
DAC Digital-to-analog converter
DACC Digital to analog current converter
DC Direct current
DI Deionized
DMG Differential mode gain
DPLL Digital phase-locked loop
DSP Digital signal processing
ECG Electrocardiogram
EEG Electroencephalogram
EEP Electrically evoked potential
EER Electrically evoked response
eERG Electrically elicited ERG
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIS</td>
<td>Electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>EKG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EP</td>
<td>Evoked potential</td>
</tr>
<tr>
<td>ERG</td>
<td>Electroretinogram</td>
</tr>
<tr>
<td>ETDRS</td>
<td>Early Treatment Diabetic Retinopathy Study</td>
</tr>
<tr>
<td>FA</td>
<td>Fluorescein angiogram</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-Difference Time-Domain</td>
</tr>
<tr>
<td>fERG</td>
<td>Focal ERG</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>FrACT</td>
<td>Freiburg visual acuity and contrast test</td>
</tr>
<tr>
<td>GABA</td>
<td>Glutamate and γ-aminobutyric acid</td>
</tr>
<tr>
<td>GCL</td>
<td>Ganglion cell layer</td>
</tr>
<tr>
<td>GS</td>
<td>Glutamine synthetase</td>
</tr>
<tr>
<td>HMD</td>
<td>Head-mounted display</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated circuit</td>
</tr>
<tr>
<td>ICMS</td>
<td>Intracortical microstimulation</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor-1</td>
</tr>
<tr>
<td>IIP</td>
<td>IIP-Technologies gmbh</td>
</tr>
<tr>
<td>ILM</td>
<td>Inner limiting membrane</td>
</tr>
<tr>
<td>INL</td>
<td>Inner nuclear layer</td>
</tr>
<tr>
<td>IOP</td>
<td>Intraocular pressure</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IrOx</td>
<td>Iridium oxide</td>
</tr>
<tr>
<td>ISCEV</td>
<td>International Society for Clinical Electrophysiology of Vision</td>
</tr>
<tr>
<td>IT</td>
<td>Inferotemporal cortex</td>
</tr>
<tr>
<td>LEP</td>
<td>Light evoked potential</td>
</tr>
<tr>
<td>LFP</td>
<td>Local field potential</td>
</tr>
<tr>
<td>LGN</td>
<td>Lateral geniculate nucleus</td>
</tr>
<tr>
<td>LSI</td>
<td>Large-scale integration</td>
</tr>
<tr>
<td>LVES</td>
<td>Low vision enhancement system</td>
</tr>
<tr>
<td>mfERG</td>
<td>Multifocal ERG</td>
</tr>
<tr>
<td>MOEMS</td>
<td>Micro-optoelectromechanical systems</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NAIST</td>
<td>Nara Institute of Science and Technology</td>
</tr>
<tr>
<td>NEDO</td>
<td>New Energy Development Organization</td>
</tr>
<tr>
<td>NFL</td>
<td>Nerve fiber layer</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-infrared</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-d-aspartic acid</td>
</tr>
<tr>
<td>NMOS</td>
<td>n-Channel metal-oxide semiconductor</td>
</tr>
<tr>
<td>OCT</td>
<td>Optical coherence tomography</td>
</tr>
<tr>
<td>ON</td>
<td>Optic nerve</td>
</tr>
<tr>
<td>ONL</td>
<td>Outer nuclear layer</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>PDA</td>
<td>cis-2,3-piperidinecarboxylate</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial differential equation</td>
</tr>
<tr>
<td>PDMS</td>
<td>Poly-dimethylsiloxane</td>
</tr>
<tr>
<td>pERG</td>
<td>Pattern ERG</td>
</tr>
<tr>
<td>PFCL</td>
<td>Perfluorodecaline</td>
</tr>
<tr>
<td>pfERG</td>
<td>Paired-flash ERG</td>
</tr>
<tr>
<td>PFM</td>
<td>Pulse frequency modulation</td>
</tr>
<tr>
<td>PIM</td>
<td>Partial inductance method</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-locked loop</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl-methacrylate</td>
</tr>
<tr>
<td>PMOS</td>
<td>p-channel metal-oxide semiconductor</td>
</tr>
<tr>
<td>PS</td>
<td>Current pulse stimulation</td>
</tr>
<tr>
<td>RCCS</td>
<td>Regulated cascade current sink</td>
</tr>
<tr>
<td>RCS</td>
<td>Royal College of Surgeons</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RGC</td>
<td>Retinal ganglion cell</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>RP</td>
<td>Retinitis pigmentosa</td>
</tr>
<tr>
<td>RPE</td>
<td>Retinal pigment epithelium</td>
</tr>
<tr>
<td>RS</td>
<td>Retinal stimulator</td>
</tr>
<tr>
<td>RSA</td>
<td>Retinal stimulating array</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase–polymerase chain reaction</td>
</tr>
<tr>
<td>SC</td>
<td>Superior colliculus</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron micrograph</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard errors of the mean</td>
</tr>
<tr>
<td>SHE</td>
<td>Standard hydrogen electrode</td>
</tr>
<tr>
<td>SIDNE</td>
<td>Stimulation-induced depression of electrical excitability</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to noise ratio</td>
</tr>
<tr>
<td>SOC</td>
<td>System-on-chip</td>
</tr>
<tr>
<td>SPC</td>
<td>Serial to parallel converter</td>
</tr>
<tr>
<td>SSMP</td>
<td>Second Sight Medical Products</td>
</tr>
<tr>
<td>STS</td>
<td>Suprachoroidal transretinal stimulation</td>
</tr>
<tr>
<td>TES</td>
<td>Transcorneal electrical stimulation</td>
</tr>
<tr>
<td>TFF</td>
<td>T flip-flops</td>
</tr>
<tr>
<td>TTX</td>
<td>Tetrodotoxin</td>
</tr>
<tr>
<td>ULR</td>
<td>Unit-like response</td>
</tr>
<tr>
<td>VEP</td>
<td>Visually evoked potentials</td>
</tr>
<tr>
<td>VER</td>
<td>Visually evoked response</td>
</tr>
<tr>
<td>VGA</td>
<td>Video graphics array</td>
</tr>
<tr>
<td>VPU</td>
<td>Visual processing unit</td>
</tr>
<tr>
<td>WIBI</td>
<td>Wireless implantable biodevice interface</td>
</tr>
</tbody>
</table>