Metric-Driven Design Verification
An Engineer’s and Executive’s Guide to First Pass Success
Hamilton B. Carter
Shankar Hemmady

Metric-Driven Design Verification
An Engineer’s and Executive’s Guide to First Pass Success

Springer
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Authors</td>
<td>xi</td>
</tr>
<tr>
<td>Dedications</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xix</td>
</tr>
<tr>
<td>Contributing Authors in Order of Appearance</td>
<td>xxi</td>
</tr>
<tr>
<td>PART I ANALYZING AND DRIVING VERIFICATION: AN EXECUTIVE’S GUIDE</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1 The Verification Crisis</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2 Automated Metric-Driven Processes</td>
<td>13</td>
</tr>
<tr>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>The Process Model</td>
<td>15</td>
</tr>
<tr>
<td>The Automated Metric-Driven Process Model</td>
<td>16</td>
</tr>
<tr>
<td>Project Management Using Metric-Driven Data</td>
<td>28</td>
</tr>
<tr>
<td>What Are Metrics For?</td>
<td>29</td>
</tr>
<tr>
<td>Tactical and Strategic Metrics</td>
<td>29</td>
</tr>
<tr>
<td>Summary</td>
<td>30</td>
</tr>
<tr>
<td>Chapter 3 Roles in a Verification Project</td>
<td>31</td>
</tr>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>The Executive</td>
<td>31</td>
</tr>
<tr>
<td>Marketing</td>
<td>33</td>
</tr>
<tr>
<td>Design Manager</td>
<td>34</td>
</tr>
<tr>
<td>Verification Manager</td>
<td>34</td>
</tr>
<tr>
<td>Verification Architect/Methodologist</td>
<td>35</td>
</tr>
<tr>
<td>Design/System Architect</td>
<td>36</td>
</tr>
<tr>
<td>Verification Engineer</td>
<td>37</td>
</tr>
<tr>
<td>Design Engineer</td>
<td>38</td>
</tr>
<tr>
<td>Regressions Coordinator</td>
<td>39</td>
</tr>
<tr>
<td>Debug Coordinator</td>
<td>39</td>
</tr>
<tr>
<td>Summary</td>
<td>40</td>
</tr>
<tr>
<td>Chapter 4 Overview of a Verification Project</td>
<td>41</td>
</tr>
<tr>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Summary</td>
<td>49</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 5 Verification Technologies 51
 Introduction 51
 Metric-Driven Process Automation Tools 52
 Modeling and Architectural Exploration 58
 Assertion-Based Verification 63
 Simulation-Based Verification 70
 Mixed-Signal Verification 73
 Acceleration/Emulation-Based Verification 75
 Summary 78

PART II MANAGING THE VERIFICATION PROCESS 79

Chapter 6 Verification Planning 81
 Introduction 81
 Chapter Overview 83
 Verification Planning 86
 Summary 105

Chapter 7 Capturing Metrics 107
 Introduction 107
 The Universal Metrics Methodology 109

Chapter 8 Regression Management 113
 Introduction 113
 Early Regression Management Tasks 114
 Regression Management 114
 Linking the Regression and Revision Management Systems 115
 Bring-Up Regressions 116
 Integration Regressions 119
 Design Quality Regressions 121
 Managing Regression Resources and Engineering
 Effectiveness 122
 Regression-Centric Metrics 123
 How Many Metrics Are Too Many? 125
 Summary 127

Chapter 9 Revision Control and Change Integration 129
 Introduction 129
 The Benefits of Revision Control 131
 Metric-Driven Revision Control 132
 Summary 139

Chapter 10 Debug 141
 Introduction 141
PART III EXECUTING THE VERIFICATION PROCESS 155

Chapter 11 Coverage Metrics 157
- Introduction 157

Chapter 12 Modeling and Architectural Verification 163
- Introduction 163
- How to Plan 164
- Tracking to Closure 165
- Reusing Architectural Verification Environments 165
- Summary 166

Chapter 13 Assertion-Based Verification 167
- Introduction 167
- How to Plan 170
- Tracking to Closure 175
- Opportunities for Reuse 177
- Summary 179

Chapter 14 Dynamic Simulation-Based Verification 181
- Introduction 181
- How to Plan 183
- Taxonomy of Simulation-Based Verification 187
- Tracking to Closure 191
- Summary 196

Chapter 15 System Verification 197
- Introduction 197
- Coverification Defined 199
- Advancing SoC Verification 201
- List of Challenges 202
- ARM926 PrimeXsys Platform Design 205
- Closing the Gap 207
- DMA Diagnostic Program 208
- Connecting the DMA Diagnostic to the Verification Environment 212
- Connecting the Main() Function in C 215
- Writing Stubs 216
- Creating Sequences and Coverage 217
- Conclusion 219
- References 220
Chapter 16 Mixed Analog and Digital Verification 221
 Abstract 222
 Introduction 222
 Traditional Mixed-Signal Verification 223
 Verification Planning 225
 Analog Mixed-Signal Verification Kit 229
 Conclusion 233
 Reference 234

Chapter 17 Design for Test 235
 Introduction 236
 Motivation 238
 A Unified DFT Verification Methodology 239
 Planning 240
 Executing 241
 Automating 243
 Test Case 245
 Benefits 248
 Future Work 249
 Conclusions 249
 References 250

PART IV CASE STUDIES AND COMMENTARIES 253

Metric-Driven Design Verification: Why Is My Customer a Better Verification Engineer Than Me? 255
 Abstract 255
 Introduction 256
 Section 1: The Elusive Intended Functionality 257
 Section 2: The Ever-Shrinking Schedule 265
 Section 3: Writing a Metric-Driven Verification Plan 270
 Section 4: Implementing the Metric-Driven Verification Plan 274
 Conclusion 277

Metric-Driven Methodology Speeds the Verification of a Complex Network Processor 279
 The Task Looked to be Complex 280
 Discovering Project Predictability 281
 A Coverage-Driven Approach, a Metric-Driven Environment 282
 A New Level of Confidence 283

Developing a Coverage-Driven SoC Methodology 285
 Introduction 285
 Verification Background 286
 Current Verification Methodology 289
The Authors

Hamilton Carter
Hamilton Carter has been awarded 14 patents in the field of functional verification. The patents address efficient sequencers for verification simulators, MESI cache coherence verification and component-based reusable verification systems. Carter worked on verification of the K5, K6, and K7 processors and their chipsets at AMD. He staffed and managed the first functional verification team at Cirrus Logic and has served as a manager, engineer, or consultant on over 20 commercial chips and EDA projects.

Shankar Hemmady
Shankar Hemmady is a senior manager at Cadence responsible for verification planning, methodology, and management solutions. Mr. Hemmady has verified and tested, or managed the functional closure of over 25 commercial chips over the past 18 years during his tenure in the industry as an engineer, manager, and consultant at 12 companies, including AMD, Cirrus Logic, Fujitsu, Hewlett Packard, Intel, S3, Sun, and Xerox.
To my Parents who removed the word “cannot” from my vocabulary!

Hamilton Carter

To Seema, Shona, & Anand who make each and every moment a special one!

Shankar Hemmady
Preface

With the alarming number of first pass silicon functional failures, it has become necessary for all levels of engineering companies to understand the verification process. This book is organized to address all verification stakeholders at all levels of the engineering organization. The book is targeted at three somewhat distinct audiences:

- **Executives.** The people with their jobs on the line for increasing shareholder value.
- **Project, design, and verification managers.** The people responsible for making sure each design goes out on time and perfect!
- **Verification and design engineers.** The innovators responsible for making sure that the project actually succeeds.

The book is divided into three parts corresponding to its three audiences. The level of technical depth increases as the book proceeds.

Part 1 gives an overview of the functional verification process. It also includes descriptions of the tools that are used in this flow and the people that enable it all. After outlining functional verification, Part I describes how the proper application of metric-driven techniques can enable more productive, more predictable and higher quality verification projects. Part I is targeted at the executive. It is designed to enable executives to ask appropriate educated questions to accurately measure and control the flow of a project.

Part 1 also holds value for project managers and verification engineers. It provides an overall view of the entire chip design process from a verification perspective. The chapters on a typical verification project and the overview of verification technologies will be of use to entry level verification engineers as well. This part of the book also provides a unique viewpoint on why management is asking for process data and how that data might be used.
Part II describes the various process flows used in verification. It delves into how these flows can be automated, and what metrics can be measured to accurately gauge the progress of each process. Part II is targeted at design and verification project managers. The emphasis is on how to use metrics within the context of standardized processes to react effectively to bumps in the project’s execution.

Part III’s audience is the design and verification engineering team. It focuses on the actual verification processes to be implemented and executed. This section of the book is divided with respect to the various verification technologies. Each chapter on a given technology is further subdivided into sections on how to plan effectively, and how to track metrics to closure.

Entire books have been written on implementing verification using the technologies discussed in Part III. We will not reiterate what those excellent volumes have already stated, nor do we intend to reinvent the wheel (yet, we are engineers after all). Implementation details will be discussed when they will make the metric-driven techniques discussed more effective.

Part IV contains various case studies and commentaries from experts in the metric-driven verification field.

The various parts of the book can also be described as a progression of process abstractions. The layers of abstractions are “Observational Processes,” “Container Processes,” and “Implementation Processes.”

Observational Processes

Part I looks at the verification process from an observational point of view. The various aspects of a project that should be observed are described to the reader along with informal suggestions about how to strategically manage a verification project based on these observations.
Container Processes

Part II looks at processes that are necessary regardless of the verification technology you are using; processes such as regression management, revision control, and debug. Part II describes how to implement these processes using metric-driven methodologies. It also discusses the inter-relations of these processes.

Implementation Processes

Part III describes each of the verification technologies and explores how a metric-driven methodology can be used to enhance the productivity, predictability, and quality offered by each of these technologies.

Finally, Part IV leaves the world of abstraction altogether and presents several concrete case studies that illustrate metric-driven processes in action. In addition to these case studies are several commentaries offered by industry experts in metric-driven methodologies.
Introduction

Legend has it that 2300 years ago, Euclid walked the beaches of Egypt with his students. They were exploring the fundamentals of a new field: geometry. Each day, Euclid would draw a new problem in the sandy shores of the Mediterranean Sea. He’d ask his students to reflect on each problem and discover what they could. One day he sketched a diagram that would come to be known as Euclid’s 42nd Problem.

One of his particularly bright students worked on the diagram and came back with a simple formula:

$$a^2 + b^2 = c^2$$

This formula became so famous that it is now known simply by its discoverer’s name: the Pythagorean Formula.
Pythagoras thirsted for knowledge and spent most of his life traveling the various countries of the ancient Hellenic world searching for it. In his travels, he encountered many cultures and gleaned valuable knowledge from each of them applying it to the burgeoning new field of geometry.

Today we’re witnessing the birth of another new field, Metric-Driven Verification. Like Euclid, we hope to layout templates that not only illustrate the basics of this promising new field, but also inspire the reader to make even greater discoveries. Like Pythagoras, we have traveled the world searching for the best applications of this knowledge.

This book contains more than our basic understanding of the principles of metric-driven verification. The book also contains examples and experiences gleaned from many industry experts in verification and design. All of these are presented in their entirety in Part IV.

The last three chapters of Part III are about emerging technologies in the field of metric-driven verification:

- System verification
- Mixed-signal verification
- Verification of DFT hardware

These chapters use a different format. Each chapter contains a complete case study from one of the industry leaders in each of these three emerging areas.
Contributing Authors in Order of Appearance

Jason Andrews
Jason Andrews is a project leader at Cadence Design Systems, where he is responsible for hardware/software co-verification and methodology for system-on-chip (SoC) verification. He is the author of the book “Co-Verification of Hardware and Software for ARM SoC Design” and holds a bachelor’s degree in electrical engineering from The Citadel (Charleston, SC) and a master’s degree in electrical engineering from the University of Minnesota (Minneapolis).

Monia Chiavacci
Ms. Chiavacci cofounded Yogitech in 2000. She is responsible for the mixed signal division. She worked as an analog designer from 1998 to 2000 after receiving her degree cum laude in electronic engineering at the Pisa University. Her work experiences include high-reliability systems in critical environments such as biomedical, space, and high-voltage automotive applications.

Gabriele Zarri
Mr. Zarri is a verification engineer at Yogitech. He is responsible for the development of verification IPs, verification environments for many international customers, and trainings on verification methodologies. His experience includes automotive protocols such as LIN, CAN, and Flexray. He is expert in OCP protocol, a universal complete socket standard for SoC design, and has recently acquired experience in the verification of mixed signal circuits. Gabriele specialized in Microelectronics and Telecommunications with an MS from Nice Sophia-Antipolis University.
Egidio Pescari
Egidio is a senior design and verification engineer at Yogitech. Prior to Yogitech, Mr. Pescari developed systems in critical environments such as automotive and space applications. He acquired experience in many automotive protocols such as LIN and CAN. He graduated from the University of Perugia in 1998.

Stylianos Diamantidis
Stylianos Diamantidis is the Managing Director of Globetech Solutions. Mr. Diamantidis is responsible for driving IP product strategy, engineering and consulting services. Prior to cofounding Globetech Solutions, he managed SGI’s systems diagnostics group, spanning across servers, supercomputers, and high-end graphics product lines. His current areas of interest include advanced design verification methodologies, embedded systems, silicon test, debug, and diagnosis. Stylianos holds a B.Eng. from the University of Kent at Canterbury, UK and a MS in electrical engineering from Stanford University, USA. He is a member of the IET, IEEE, and IEEE-DASC.

Iraklis Diamantidis
Iraklis Diamantidis is a founder and senior verification engineer at Globetech Solutions. His current areas of interest include Electronic System-Level Design, Advanced Design Verification Methodologies, Silicon Test, Debug and Diagnosis, and System Software. Iraklis holds a B.Eng. from the University of Kent at Canterbury, UK, and a MS in electrical engineering from Stanford University. He is a member of the IET and the IEEE.
Thanasis Oikonomou
Thanasis Oikonomou is a senior digital systems designer and verification engineer at Globetech Solutions. His interests include computer architecture, high-speed networks, digital design, verification, and testing. He received BSc and MSc in computer science from the University of Crete, Greece.

Jean-Paul Lambrechts
Jean-Paul Lambrechts has over 20 years experience in leading hardware design in the networking and computer areas. His experience covers board-level hardware design, FPGA, and verification. Jean-Paul has now been with Cisco for 9 years where he has been responsible for line cards, packet forwarding engines, and layer 4–7 processor card. Jean-Paul holds a MSEE degree from the Louvain University in Belgium.

Alfonso Íñiguez
Alfonso Íñiguez is a principal staff verification engineer with the Security Technology Center at Freescale Semiconductor, where he is the verification lead responsible for developing, improving and applying functional verification tools, and methodologies. His work includes cryptographic hardware accelerator design. He holds a B.S. in computer engineering from the Universidad Autónoma de Guadalajara, México, and an MS in electrical engineering from the University of Arizona.
Contributing Authors in Order of Appearance

Dr. Andreas Dieckmann
In 1995, after obtaining his MA at the University of Erlangen and his Ph.D. in electronic engineering at Technical University of Munich, Dr. Dieckmann began working at Siemens AG. He was initially responsible for board and fault simulation. From 1997, Dr. Dieckmann gained expertise in system simulation and verification of ASICs. Since 2001, he has been in charge of coordinating and leading several verification projects employing simulation with VHDL and Specman “e,” formal property and equivalence checking, emulation, and prototyping.

Susan Peterson
Susan Peterson has been trying to escape from the EDA industry for the past 20 years, where she has spent her time listening to customers and trying to help them to solve their critical problems in various sales and marketing roles. Prior to that, she was a practicing engineer, and earned her MBA from the University of Denver.

Paul Carzola
Paul Carzola is a senior consulting engineer for verification at Cadence. He received a Bachelor of Science Degree in computer engineering at Florida Atlantic University in 1995. Since then, Paul has spent the last 10 years in functional verification and the pursuit to finding effective and powerful methods to verification while making it easier and enjoyable to apply. For the past 5 years, he has served in a consulting role in the area of functional verification methodology and has seen first hand the power of a Coverage-Driven approach.
YJ Patil

YJ Patil is a senior verification engineer at Genesis Microchip, where he is responsible for managing the verification of digital television (DTV) controller ASICs. Prior to Genesis, Mr. Patil was a verification engineer at several technology leaders including ATI, Silicon Access Networks, and Philips Semiconductors. He was a board designer at Tektronix. Mr. Patil holds an MS in software systems from BITS Pilani, India and BE in electronics and communication from Gulbarga University, India.

Dean D’Mello

Dean D’Mello is a solutions architect at Cadence Design Systems. He works closely with key customers worldwide to deploy advanced verification technologies, and with R&D to plan, develop, and introduce new methodologies and products. Prior to Cadence, Mr. D’Mello held ASIC design and verification roles at LSI Logic, Cogency Semiconductor, and Celestica, and product and test engineering roles at IBM. Dean holds a Masters of Applied Science (MASc) in electrical and computer engineering, from the University of Toronto, Canada.

Steve Brown

Steve Brown is Director of Marketing for Enterprise Verification Process Automation at Cadence Design Systems. He is a 20-year veteran of the EDA verification industry and has held various engineering and marketing positions at Cadence, Verisity, Synopsys, and Mentor Graphics. He specializes in solving engineering, management, and marketing challenges that arise when new technology and products enter the market. He earned BSEE and MSEE degrees from Oregon State University and has studied marketing strategy at Harvard, Stanford, Kellogg, and Wharton.
Roger Witlox

Roger Witlox joined Philips Research Laboratories in Eindhoven, The Netherlands in 1992, where he has been working on optical coherent communications systems and access networks. Mr. Witlox was earlier involved in the development of analog laser temperature and current control system. In 2000, he joined the CTO organization at Philips Semiconductors, where he was responsible for development and support of an in-house verification tool. He has been responsible for functional verification methodologies for hardware IP and was a member of the Verification Technical Work Group of the SPIRIT consortium. In 2004, he joined the DSP Innovation Center and is currently focusing on DSP subsystems, both specification and verification.

Ronald Heijmans

Ronald Heijmans studied at the Hoge School Eindhoven and graduated in 1992 in the field of “Technical Computer Science.” He started his career as a PCB designer at the Philips Research Laboratories. Later, Mr. Heijmans focused on DSP algorithm design and applications for multichannel audio and speech coding. In 1999, he became a verification engineer at ESTC Philips Semiconductors, where he focused on DSP core and subsystems. Currently, as a verification architect, Ronald is defining a new environment including new verification methodologies.

Chris Wieckardt

Chris Wieckardt has been a verification engineer at Philips Semiconductors, Adelante Technologies and NXP Semiconductors in Eindhoven, The Netherlands since 2000. Prior to Philips, Mr. Wieckardt was a digital design engineer at Océ Research and Development, Venlo, The Netherlands.
Dr. Laurent Ducousso

Laurent Ducousso has over 20 years of experience in digital design and verification. In 1994, Dr. Ducousso joined STMicroelectronics as the verification expert on CPU, microcontroller and DSP projects. Since 2000, he has managed the Home Entertainment Group verification team. Prior to STMicroelectronics, he was engaged in mainframe CPU development at Bull S.A for 8 years. Laurent holds a Ph.D. in computer sciences from Paris, France.

Frank Ghenassia

Frank Ghenassia is Director of the System Platforms Group in the HPC (Home, Portable, and Communication) sector at STMicroelectronics. Mr. Ghenassia focuses on IP/SOC verification, architecture definition, platform automation, and embedded software development based on high-level modeling approaches. He joined STMicroelectronics in 1995 and has worked on OS development, software debuggers, and system-to-RTL design flow activity. Mr. Ghenassia received his MS in electrical engineering in Israel.

Dr. Joseph Bulone

Joseph Bulone manages a team that provides central services in hardware emulation to STMicroelectronics divisions. Joseph defines and provides hardware-accelerated platforms for IP/SoC verification and software development. He joined the Central R&D division of STMicroelectronics in 1989, and was initially involved in the design of ATM chips. He began working on hardware emulation in 1993. He has been in charge of video chip validation, and hardware software co-design. He holds a Ph.D. in microelectronics from the Institut National Polytechnique de Grenoble, France.