Ultra-Wideband, Short-Pulse Electromagnetics 7
Edited by Frank Sabath, Eric L. Mokole, Uwe Schenk and Daniel Nitsch

Ultra-Wideband, Short-Pulse Electromagnetics 7

Springer
Reality is evenly... only a quite special, narrow segment from the immeasurable range that thoughts are able to encompass.

(Original: Die Wirklichkeit ist eben ... nur ein ganz spezieller, schmaler Ausschnitt aus dem unermesslichen Bereich dessen, was die Gedanken zu umspannen vermögen.)

Max Planck

The question on nature is not answered now, but the intellect which is no longer afflicted stops asking the question that it is incapable of answering/unqualified to answer.

(Original: Es ist nun zwar nicht die Frage nach dem Wesen beantwortet, aber der nicht mehr gequälte Geist hört auf, die für ihn unberechtigte Frage zu stellen.)

Heinrich Hertz
Ultra-wideband (UWB), short-pulse (SP) electromagnetics as a subject has been of interest for decades. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. As a result, wideband systems that were difficult or impossible to field 10 years ago are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing.

Bertoni, Carin, and Felsen initiated the first UWB–SP Electromagnetics Conference in 1992 to weave a responsive cord throughout the electromagnetics community. Since then, UWB-SP conferences have been events that discussed current developments in UWB–SP technologies and systems and that placed special emphasis on UWB-SP methodologies, time-domain data processing, and time-domain modeling.

The goals of the most recent meetings were:

- to focus on advanced technologies for the generation, radiation, and detection of UWB–SP signals, taking into account their propagation about, scattering from, and coupling to targets and media of interest;
- to report on developments in supporting mathematical and numerical methods;
- to describe current and potential future applications of the technology.

The session topics of UWB-SP7 included electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques.

This book presents selected contributions of the UWB–SP7 Conference that was held in conjunction with the EUROEM 2004 in Magdeburg, Germany, in July of 2004. The editorial board’s goal is to cover the complete range of aforementioned topics with articles of deep technical content and high scientific quality. The final selection of articles is organized by the topics of antennas, electromagnetic theory and modeling, time-domain computational techniques, pulsed-power, UWB interactions, UWB and transient metrology, radar systems, detection, target identification and signal processing, UWB communications, and broadband systems and components. We hope the book contains something of interest for every scientist and engineer working in the area of UWB and SP electromagnetics.
In keeping with the themes of UWB–SP7, a picture\(^1\) of Heinrich Hertz is displayed on the cover of this volume to honor his contributions to electromagnetics as the first scientist to demonstrate the existence of electromagnetic radiation by building an apparatus that produced radio waves. Finally, the editorial board would like to express its gratitude to all persons who contributed to this book.

Frank Sabath
Eric L. Mokole
Uwe Schenk
Daniel Nitsch

\(^1\) The source of the picture is Internet & eCommerce Online Lexicon at http://www.atm-mix.de.
Contents

Preface vii

Part 1. Electromagnetic Theory & Modelling 1

1. EM Topology: From Theory to Application
 J.-P. Parmantier and I. Junqua 3

2. Simulating the Response of Semi-Shielded Systems:
 Electromagnetic Topology Technique
 Phumin Kirawanich, Nakka S. Kranthi, Rahul Gunda,
 Jean-Philippe Parmantier, Solange Bertuol, and N. E. Islam 13

 and Applications
 Ilirgen Nitsch and Sergey Tkachenko 21

4. TEM Field Structure of Electric and Magnetic Fields
 From a Semi-Infinite Vertical Thin-Wire Antenna Above
 a Conducting Plane
 R. Thottappillil, M. A. Uman, and N. Theethayi 33

5. Axial Backscattering from a Wide Angular Sector
 C. E. Baum 41

6. Transient Responses of Short-Pulse Signals in
 Scattering Problems
 Mengtao Yuan, Mary C. Taylor, and Tapan K. Sarkar 50

7. Transient Phase-Space Inhomogeneous Green’s Functions
 for Modeling High Contrast Scattering
 T. Melamed 56

8. Dynamical Behavior of the Brillouin Precursor in
 Rocard-Powles-Debye Model Dielectrics
 Kurt Edmund Oughstun 64

9. Embedding Multiple Wires Within a Single TLM Node
 K. Biwojno, P. Sewell, Y. Liu, and C. Christopoulos 71

10. Simulation of Nonlinear Integrated Photonics Devices:
 A Comparison of TLM and Numerical Time Domain Integral
 Equation Approaches
 T. M. Benson, A. Al. Jarro, P. Sewell, V. Janyani, J. D. Paul,
 and A. Vukovic 80
11. Circuit Based Full-Wave Models for Nonuniform Line Structures Created with the Method of Partial Elements
 S. V. Kochetov and G. Wollenberg

Part 2. Time-Domain Computational Techniques

12. A Novel Methodology Combining Antennas, Propagation, and Nonlinear Switching Circuits in Transient Time-Domain Simulation
 Stan Zwierzchowski and Michal Okoniewski

 Jan Ritter and Robert Kebel

14. Electromagnetic Radiation from Vertical Dipoles in Inhomogeneous Air-Lossy Medium Space
 K. Paran and M. Kamyab

15. On the Efficient Numerical Time-Domain Processing of Aperture Antenna Field
 M. Ciattaglia and G. Marrocco

16. Efficient FDTD Parallel Processing on Modern PC CPUs
 W. Simon, A. Lauer, D. Manteuffel, A. Wien, and I. Wolff

17. A Hybrid Time-Domain Technique that Combines ADI-FDTD and MoM-TD to Solve Complex Electromagnetic Problems
 Salvador González García, Amelia Rubio Bretones, Rafael Godoy Rubio, Mario Fernández Pantoja, and Rafael Gómez Lopez

18. Use of Higher Order Basis in Solution of Electromagnetic Field Problems
 T. K. Sarkar, B. Kolundzija, and M. Salazar-Palma

19. Solving Time Domain Electric Field Integral Equation for Thin-Wire Antennas Using the Laguerre Polynomials
 Z. Ji, T. K. Sarkar, B. H. Jung, and M. Salazar-Palma

20. Fast Time Domain Integral Equation Solver for Dispersive Media
 E. Bleszynski, M. Bleszynski, and T. Jaroszewicz

21. Analytical–Numerical Calculation of Transient Processes in Nonlinear Networks
 Jürgen Nitsch, Nikolay Korovkin, Yuri Bichkov, Sergey Scherbakov, Sergey Demkin, and Alexey Haimin

22. Suppression of Two-Tone Disturbances in Nonlinear Circuits
 J. Nitsch, N. Korovkin, and E. Solovyeva
Part 3. Antennas 197

23. Timed Arrays and Their Application to Impulse SAR for “Through-The-Wall” Imaging 199
 G. Franceschetti, J. Tatoian, D. Giri, and G. Gibbs

 C. E. Baum

25. Aperture Engineering for Impulse Radiating Antennas 215
 J. S. Tyo

26. Antenna Characterization for the JOLT Impulsive Radiator via Low-Voltage Measurements 224

27. A Dual-Polarity Impulse Radiating Antenna 239
 L. H. Bowen, E. G. Farr, and D. I. Lawry

28. Effect of Reflector Defocus on the Radiation Patterns of Impulse Radiating Antennas 248
 J. S. Tyo, E. G. Farr, and D. I. Lawry

29. A Portable Automated Time-Domain Antenna Range: The PATAR™ System 258

30. Practical Realization of PxM Antennas for High-Power, Broadband Applications 267
 J. McLean and R. Sutton

31. Transmission and Reception by Nonreflecting UWB Antennas 276
 D. Ghosh and T. K. Sarkar

32. Design and Characterization of a Lens TEM Horn 289

33. 100 GHz Broadband High Power Antennas 297
 Andrew S. Podgorski

34. Partial Dielectric Loaded TEM-Horn Design for UWB Ground Penetrating Impulse Radar Systems 306
 A. Serdar Turk and D. S. Armagan Sahinkaya

35. Antenna Development for Impulse Radar Applications in Civil Engineering 316
 C. Maierhofer, T. Kind, and J. Wöstmann

36. Analysis of Radiation from a Dielectric Wedge Antenna 325
 A. Yarovoy and J. Zijderveld
37. Characterizing Impulse Radiating Antennas by an Intuitive Approach
 J. Sachs, P. Peyerl, P. Rauschenbach, F. Tkac, and R. Zetik
 334
38. A Tapered Coplanar Strip Antenna with Improved Matching
 A. Butrym and S. Pivnenko
 342
39. Antipodal Vivaldi Antenna for UWB Applications
 X. Qing and Z. N. Chen
 354
40. Low-Cost Printed Monopole Antennas for Wideband Applications
 T. Dissanayake, K. Esselle, and Y. Ge
 363
41. Small and Broadband Planar Antennas for UWB Wireless Communication Applications
 Z. N. Chen
 371
42. Characterization of UWB Antennas by Their Spatio-Temporal Transfer Function Based on FDTD Simulations
 D. Manteuffel, J. Kunisch, and W. Simon
 380
43. Antenna Effects and Modeling in UWB Impulse Radio
 C. Roblin and A. Sibille
 391
44. Resistively Loaded Discone Antennas for UWB Communications
 L. H. Bowen, E. G. Farr, and D. R. Keene
 401
45. An Ultra Wideband Aperture Coupled Bowtie Antenna for Communications
 W. Sörgel, C. Waldschmidt, and W. Wiesbeck
 409
46. Small Patch Antennas for UWB Wireless Body Area Network
 M. Klemm and G. Tröster
 417

Part 4. Pulsed-Power

47. A Marx-Type Electromagnetic Pulse Generator
 Jae Woon Ahn, So-young Song, Ji Heon Ryu, and Myung-Suk Jung
 433
48. Fast Volume Breakdown in Argon and Air at Low Pressures
 E. Crull, H. Krompholz, A. Neuber, and L. Hatfield
 440
49. Modeling the Conductivity of a Subnanosecond Breakdown Gas Switch
 Jinhui Chen, J. Scott Tyo, and C. Jerald Buchenauer
 448
50. Development of Ultra-Wideband Pulsers at the University of Texas at Dallas
 Farzin Davanloo, Carl B. Collins, and Forrest J. Agee
 459
51. On the Spectral Variability of Ultrawideband High-Power Microwave Sources by Generating Pulse Sequences
 Jürgen Schmitz, Markus Jung, and Gerd Wollmann
 467
Part 5. UWB Interaction

52. UWB, LPM, HPM, and EMP Susceptibility of Complex PC Systems
 A. Bausen, U. Schenk, J. Maack, and D. Nitsch
 479

53. Coupling and Effects of UWB Pulses into and on Electronic Systems
 Daniel Nitsch and Jan Luiken ter Haseborg
 487

54. Classification of the Destruction Effects in CMOS-Devices after Impact of Fast Transient Electromagnetic Pulses
 Michael Camp, Sven Korte, and Heyno Garbe
 501

55. General Analysis of Leaky Section Cables for Multiband Aircraft Cabin Communications with Different Measurement Techniques
 Sven Fisahn, Michael Camp, Núria Riera Díaz, Robert Kebel, and Heyno Garbe
 509

56. Measurement of the Mutual Interference Between Independent Bluetooth Devices
 Adrien Schoof and Jan Luiken ter Haseborg
 517

57. Lightning Model Development: Contribution to High Power Electromagnetics
 R. L. Gardner
 527

Part 6. UWB & Transient Metrology

58. Measurement of the Pulse Radiation of an IRA in Time Domain
 Thiemo Stadtler, Jan Luiken ter Haseborg, and Frank Sabath
 537

59. A Comparison of Two Sensors Used to Measure High-Voltage, Fast-Risetime Signals in Coaxial Cable
 Everett G. Farr, Lanney M. Atchley, Donald E. Ellibee, William J. Carey, and Larry L. Altgilers
 544

60. Short Pulse Measurements by Field Sensors with Arbitrary Frequency Response
 G. Cerri, H. Herlemann, V. Mariani Primiani, and H. Garbe
 552

61. Time Domain Measurements to Validate Test Site Characteristics
 Sven Battermann and Heyno Garbe
 561

Part 7. Radar Systems

62. Survey of Ultra-wideband Radar
 Eric L. Mokole and Pete Hansen
 571

63. Measurement of Automobile UWB Radar Cross Sections at Ka Band
 Takehiko Kobayashi, Naoto Takahashi, Makoto Yoshikawa, Kikuo Tsunoda, and Nobuyuki Tenno
 586
64. Directly Measuring Ocean Forward Scatter with an UWB Radar
 Pete Hansen, Kim Scheff, and Eric Mokole
 593

65. Some Broadband Calculated RF Scatter from the Trihedral Corner Reflector
 E. L. Mokole, B. T. Gold, D. J. Taylor, T. K. Sarkar, and J. P. Hansen
 604

66. Through-Wall Imaging by Means of UWB Radar
 Rudolf Zetik, Jürgen Sachs, and Peter Peyerl
 613

67. Multiwaveform Video Impulse Radar for Landmine Detection
 Alexander Yarovoy, Alexander Schukin, Igor Kaploun, and Leo Ligthart
 623

68. Detection of Avalanche Victims Using Ultra-wideband Short-Pulse Radar
 Walid A. Chamma, Howard Mende, Greg Barrie, and Robert Robinson
 632

69. Comparison of Seismic Migration and Stripmap SAR Imaging methods for GPR for Landmine Detection
 C. Gilmore, H. Su, I. Jeffrey, M. Phelan, and J. LoVetri
 646

70. Application of UWB Near-Field Polarimetry to Classification of GPR Targets
 Alexander Yarovoy, Friedrich Roth, Vsevolod Kovalenko, and Leo Ligthart
 655

Part 8. Detection, Target Identification and Signal Processing

71. Exploiting Noisy Early Time Response Using the Half Fourier Transform
 S. Jang, T. K. Sarkar, M. Salazar-Palma, and C. E. Baum
 667

72. Substructure SEM
 C. E. Baum
 681

73. Analyzing the Target Recognition Capability of an Ultra-Wideband Radar System using Time–Frequency Algorithms
 Gerald Ößberger, Thomas Buchegger, Erwin Schimbäck, Andreas Stelzer, and Robert Weigel
 690

74. Pole Estimation for Target Recognition via Late Time Scattering
 Kenneth J. Pascoe and William D. Wood
 699

75. Radar Signal Polarization Structure Investigation for Object Recognition
 V. I. Koshelev, E. V. Balzovsky, Yu. I. Buyanov, P. A. Konkov, V. T. Sarychev, and S. E. Shipilov
 707

76. Radar Target Detection at Noise and Interference Background
 V. I. Koshelev, V. T. Sarychev, and S. E. Shipilov
 715

77. Reduction of Clutter in Data for Mine-Detecting GPR
 V. Kovalenko, A. Yarovoy, and L. P. Ligthart
 723
78. Robust Target Discrimination with UWB GPR
 Timofei G. Savelyev, Takao Kobayashi, Xuan Feng, and Motoyuki Sato

Part 9. UWB Communication

79. Optimal Antenna and Signal Codesign for UWB Antenna Link
 Anatoliy O. Boryssenko and Daniel H. Schaubert

80. A Low-Complexity Receiver for Ultra-Wideband Communications
 Marco Di Renzo, Fabio Graziosi, Fortunato Santucci, Roberto Alesii and Piero Tognolatti

81. Performance of a Modified Early-Late Gate Synchronizer for UWB Impulse Radio
 Luca Reggiani and Gian Mario Maggio

82. On the Analysis of the Dynamics and Synchronization of Chaotic Modulation and Demodulation in UWB Communication and Positioning Systems
 J. C. Chedjou, J. P. Dada, I. Moussa, C. Takenga, R. Anne, and K. Kyamakya

83. Penetration of Ultra-wideband (UWB) Communication Signals Through Walls
 Concettina Buccella, Mauro Feliziani, and Giuliano Manzi

84. A Deterministic Indoor UWB Space-Variant Multipath Radio Channel Model
 Yves Lostanlen, Grégory Gougeon, and Yoann Corre

85. UWB Radio Link Modeling for Multipath Environment
 B. Uguen, F. T. Talom, and G. Chassay

86. On the Fading Properties of a UWB Link in a Dynamic Environment
 Pascal Pagani and Patrice Pajusco

87. Study on the Probability of Error in UWB with Multiuser Interference
 Jocelyn Fiorina

Part 10. Broadband Systems and Components

88. A High-Voltage UWB Coupled-Line Directional Coupler for Radar
 Everett G. Farr, Lanney M. Atchley, Donald E. Ellibee, and Dean I. Lawry

89. Realization of All-Pass-Networks for Linearizing Log.-Periodic Dipole Antennas
 Erwin Hirschmüller and Gerhard Mönich

Index